

NGLess: NGS Processing with Less Work

NGLess is a domain-specific language for NGS (next-generation sequencing
data) processing.

For questions, you can also use the ngless mailing list [https://groups.google.com/forum/#!forum/ngless].

Note

If you are using NGLess for generating results in a scientific publication, please cite

NG-meta-profiler: fast processing of metagenomes using NGLess, a
domain-specific language by Luis Pedro Coelho, Renato Alves, Paulo
Monteiro, Jaime Huerta-Cepas, Ana Teresa Freitas, Peer Bork -
Microbiome 2019 7:84;
https://doi.org/10.1186/s40168-019-0684-8

NG-meta-profiler

For metagenomics profiling, consider using ng-meta-profiler, which is a collection of predefined pipelines
developed using NGLess.

NGLess

NGLess is best illustrated by an example:

ngless "1.0"
input = paired('ctrl1.fq', 'ctrl2.fq', singles='ctrl-singles.fq')
input = preprocess(input) using |read|:
 read = read[5:]
 read = substrim(read, min_quality=26)
 if len(read) < 31:
 discard

mapped = map(input, reference='hg19')

write(count(mapped, features=['gene']),
 ofile='gene_counts.csv',
 format={csv})

Building and installing

See the install page for more information.

Basic functionality

	preprocessing and quality control of FastQ files

	mapping to a reference genome (implemented through
bwa [http://bio-bwa.sourceforge.net/] by default)

	assembly of contigs

	annotation and summarization of the alignments using reference gene
annotations

	much more

Ngless has builtin support for model organisms:

	Homo sapiens (hg19)

	Mus Muscullus (mm10)

	Rattus norvegicus (rn4)

	Bos taurus (bosTau4)

	Canis familiaris (canFam2)

	Drosophila melanogaster (dm3)

	Caenorhabditis elegans (ce10)

	Saccharomyces cerevisiae (sacCer3)

and the standard library includes support for mOTUs,
metagenomics profiling of marine samples
and human gut microbiome samples. We also
have standard library modules for helping users upgrading
from MOCAT or running many samples (we have used NGLess on projects with
>10,000 samples).

NGLess puts a strong emphasis on reproducibility.

Traditional Unix command line usage

ngless can be used as a traditional command line transformer
utility, using the -e argument to pass an inline script on the
command line.

The -p (or --print-last) argument tells ngless to output the
value of the last expression to stdout.

Converting a SAM file to a FASTQ file

Extract file reads from a SAM (or BAM) file:

$ ngless -pe 'as_reads(samfile("file.sam"))' > file.fq

This is equivalent to the full script:

ngless "1.0" # <- version declaration, optional on the command line
samcontents = samfile("file.sam") # <- load a SAM/BAM file
reads = as_reads(samcontents) # <- just get the reads (w quality scores)
write(reads, ofname=STDOUT) # <- write them to STDOUT (default format: FASTQ)

This only works if the data in the samfile is single ended as we pipe
out a single FQ file. Otherwise, you can always do:

ngless "1.0"
write(as_read(samfile("file.sam")),
 ofile="output.fq")

which will write 3 files: output.1.fq, output.2.fq, and
output.singles.fq (the first two for the paired-end reads and the
last one for reads without a mate).

Getting aligned reads from a SAM file as FASTQ file

Building on the previous example. We can add a select() call to only
output unmapped reads:

$ ngless -pe 'as_reads(select(samfile("file.sam"), keep_if=[{mapped}]))' > file.fq

This is equivalent to the full script:

ngless "1.0" # <- version declaration, optional on the command line
samcontents = samfile("file.sam") # <- load a SAM/BAM file
samcontents = select(samcontents, keep_if=[{mapped}]) # <- select only *mapped* reads
reads = as_reads(samcontents) # <- just get the reads (w quality scores)
write(reads, ofname=STDOUT) # <- write them to STDOUT (default format: FASTQ)

Reading from STDIN

For a true Unix-like utility, the input should be read from standard
input. This can be achieved with the special file STDIN. So the
previous example now reads

$ cat file.sam | ngless -pe 'as_reads(select(samfile(STDIN), keep_if=[{mapped}]))' > file.fq

Obviously, this example would more interesting if the input were to come
from another programme (not just cat).

Full documentation [https://ngless.embl.de/]

Frequently Asked Questions
(FAQ) [https://ngless.embl.de/faq.html]

Authors

	Luis Pedro Coelho [http://luispedro.org] (email: coelho@embl.de)
(on twitter: @luispedrocoelho [https://twitter.com/luispedrocoelho])

	Paulo Monteiro

	Renato Alves

	Ana Teresa Freitas [http://web.tecnico.ulisboa.pt/ana.freitas/]

	Peer Bork

Introduction

Motivation

Nearly all next generation sequence (NGS) applications rely on sequence
alignment as the first analysis step. Before the alignment they require some
kind of pre-processing of data, that is always dependent on the researcher
interest. Our objective is to allow the creation of a pipeline of work for all
the first phase of NGS analysis until the point (inclusive) of annotation. We
want to do this while achieving the following goals:

	Ease the development of NGS Tools;

	Enable an easy identification of errors;

	Easily reproduce an experiment;

	Easy configuration and execution of workflows;

	Exploit available computational resources.

Target Users

Bioinformaticians working in a wetlab setting. Every serious biological lab in
the world now needs to hire at least one. They know programming (at least
basic programming), but are not method developers.

The tool can still be useful for more advanced users.

Basic Properties

	The syntax is a pythonesque syntax with Ruby-like blocks.

	The types are statically and strictly.

	Types are implicit, but limited language allows for type inference and checking.

	Quality control is implicit and mandatory (you get it for free)

	Types are domain types (biological).

Installation

Bioconda (binary)

The recommended way to install NGLess is through
bioconda [http://bioconda.github.io]:

conda install -c bioconda ngless

Docker

Alternatively, a docker container with NGLess is available at
biocontainers [https://quay.io/repository/biocontainers/ngless]:

docker run -v $PWD:/workdir -w /workdir -it quay.io/biocontainers/ngless:0.6.1--py35_0 ngless --version

Adapt the mount flags (-v) as needed.

Linux (binary)

You can get a statically linked version of
NGless 0.6.1 [https://ngless.embl.de/releases/ngless-0.6.1-Linux64] or a nighly build
of the latest development
code [https://gitlab.com/ngless/ngless/builds/artifacts/master/raw/bin/ngless?job=build-and-test-ubuntu].
This should work across a wide range of Linux versions (please
report [https://github.com/ngless-toolkit/ngless/issues] any issues you encounter):

curl -O https://ngless.embl.de/releases/ngless-0.6.0-Linux64
chmod +x ngless-0.6.0-Linux64
./ngless-0.6.0-Linux64

This download bundles bwa, samtools and megahit (also statically linked).

If you want to try one of ngless’ builtin modules (motus, specI, …) you can
download the full nighly build zip
file [https://gitlab.com/ngless/ngless/builds/artifacts/master/download?job=build-and-test-ubuntu]
which includes them.

Windows

NGLess cannot currently compile on
Windows [https://github.com/ngless-toolkit/ngless/issues/39].

From source

Stack [https://docs.haskellstack.org/en/stable/README.html] is the simplest way
to install the necessary requirements. You should also have gcc installed (or
another C-compiler).

The following sequence of commands should download and build the software

git clone https://github.com/ngless-toolkit/ngless
cd ngless
make

The first time you run this, it will take a while as it will download all
dependencies. After this ngless is ready to use!

With Nix

If you use nix [https://nixos.org], you can easily build and install ngless
using it (these scripts also install all necessary dependencies):

nix-env -i -f https://github.com/luispedro/ngless-nix/archive/master.tar.gz

This should download the nix scripts and build ngless.

If you prefer, you can also first clone the repository:

git clone https://github.com/luispedro/ngless-nix
cd ngless-nix
inspect the default.nix & ngless.nix files if you wish
nix-env -i -f .

Make targets

The following are targets in the Makefile.

make
compiles NGLess and haskell dependencies

clean
remove local generated files by compilation

check
run tests

bench
run benchmarks

NG-meta-profiler

NG-meta-profiler is a collection of predefined pipelines for processing shotgun
metagenomes.

	human-gut.ngl for human gut samples

	marine.ngl for marine samples

	mouse-gut.ngl for mouse gut samples

	dog-gut.ngl for dog gut samples

	pig-gut.ngl for pig gut samples

These are predefined, but users are encouraged to adapt them to their specific
needs.

INSTALL

	install ngless

	install ng-meta-profiler by downloading the appropriate pipeline from github:
https://github.com/ngless-toolkit/ng-meta-profiler

USAGE

To use the profiler, select the appropriate script (e.g., human-gut.ngl
for human gut samples), put all the FastQ files from the same sample in the
same directory (INPUT-DIRECTORY) with the extension .fq.gz or fastq.gz
and run:

ngless human-gut.ngl INPUT-DIRECTORY OUTPUT-DIRECTORY

What’s New (History)

Post Version 1.0.1

User-visible improvements

	ZSTD compression is available for output and intermediate files use it for
reduced temporary space usage (and possibly faster processing).

	The countfile [https://ngless.embl.de/Functions.html#countfile] now
reorders its input if it is not ordered. This is necessary for correct usage.

	Added include_fragments option to orf_find().

	More flexible loading of functional_map arguments in count [https://ngless.embl.de/Functions.html#count] to accept multiple comment
lines at the top of the file as produced by eggnog-mapper [http://eggnog-mapper.embl.de/].

	Faster check for column headers in functional_map argument to count() [https://ngless.embl.de/Functions.html#count] function: now it is
performed as soon as possible (including at the top of the script if the
arguments are literal strings), thus NGLess can fail faster.

	Added sense argument to the count [https://ngless.embl.de/Functions.html#count] function, generalizing the
previous strand argument (which is deprecated). Whereas before it was
only possible to consider features either to be present on both strands or
only on the strand to which they are annotated, now it is also possible to
consider them present only on the opposite strand (which is necessary for
some strand-specific protocols as they produce the opposite strand).

	Added interleaved argument to fastq [https://ngless.embl.de/Functions.html#fastq]

Version 1.0.1

This is a bugfix release and results should not change.

Bugfixes

	Fix bug with external modules and multiple fastQ inputs.

	Fix bug with resaving input files where the original file was sometimes
moved (thus removing it).

Version 1.0

User-visible improvements

	The handling of multiple annotations in count [https://ngless.embl.de/Functions.html#count] (i.e., when the user
requests multiple features and/or subfeatures) has changed. The
previous model caused a few issues (#63 [https://github.com/ngless-toolkit/ngless/issues/63], but also mixing with
collect() [https://ngless.embl.de/Functions.html#collect]. Unfortunately,
this means that scripts asking for the old behaviour in their version
declaration are no longer supported if they use multiple features.

Version 0.11

Released March 15 2019 (0.11.0) and March 21 2019 (0.11.1).

Version 0.11.0 used ZStdandard compression, which was not reliable (the
official haskell zstd wrapper has issues). Thus, it was removed in v0.11.1.
Using v0.11.0 is not recommended.

User-visible improvements

	Module samtools (version 0.1) now includes samtools_view

	Add –verbose flag to check-install mode (ngless –check-install –verbose)

	Add early checks for input files in more situations (#33 [https://github.com/ngless-toolkit/ngless/issues/33])

	Support compression in collect() output (#42 [https://github.com/ngless-toolkit/ngless/issues/42])

	Add smoothtrim() [https://ngless.embl.de/Functions.html#smoothtrim] function

Bugfixes

	Fix bug with orf_find & prots_out argument

	Fix bug in garbage collection where intermediate files were often left on disk for far longer than necessary.

	Fix CIGAR (#92 [https://github.com/ngless-toolkit/ngless/issues/92]) for select() blocks

Internal improvements

	Switched to diagrams package for plotting. This should make building easier as cairo was often a complicated dependency.

	Update to LTS-13 (GHC 8.6)

	Update minimap2 version to 2.14

	Call bwa/minimap2 with interleaved fastq files. This avoids calling it twice (which would mean that the indices were read twice).

	Avoid leaving open file descriptors after FastQ encoding detection

	Tar extraction uses much less memory now (#77 [https://github.com/ngless-toolkit/ngless/issues/77])

Version 0.10.0

Released Nov 12 2018

Bugfixes

	Fixed bug where header was printed even when STDOUT was used

	Fix to lock1’s return value when used with paths (#68 - reopen [https://github.com/ngless-toolkit/ngless/issues/68])

	Fixed bug where writing interleaved FastQ to STDOUT did not work as expected

	Fix saving fastq sets with –subsample (issue #85 [https://github.com/ngless-toolkit/ngless/issues/85])

	Fix (hypothetical) case where the two mate files have different FastQ encodings

User-visible improvements

	samtools_sort() now accepts by={name} to sort by read name

	Add __extra_megahit_args to assemble() (issue #86 [https://github.com/ngless-toolkit/ngless/issues/86])

	arg1 in external modules is no longer always treated as a path

	Added expand_searchdir to external modules API (issue #56 [https://github.com/ngless-toolkit/ngless/issues/56/])

	Support _F/_R suffixes for forward/reverse in load_mocat_sample

	Better error messages when version is mis-specified

	Support NO_COLOR [https://no-color.org/] standard: when NO_COLOR is
present in the environment, print no colours.

	Always check output file writability (issue #91 [https://github.com/ngless-toolkit/ngless/issues/91])

	paired() now accepts encoding argument (it was documented to, but mis-implemented)

Internal improvements

	NGLess now pre-emptively garbage collects files when they are no longer
needed (issue #79 [https://github.com/ngless-toolkit/ngless/issues/79/])

Version 0.9.1

Released July 17th 2018

	Added NGLess preprint citation [https://www.biorxiv.org/content/early/2018/07/13/367755]

Version 0.9

Released July 12th 2018

User-visible improvements

	Added allbest() method to MappedRead.

	NGLess will issue a warning before overwriting an existing file.

	Output directory contains PNG files with basic QC stats

	Added modules for gut gene catalogs of mouse [https://www.nature.com/articles/nbt.3353], pig [https://www.nature.com/articles/nmicrobiol2016161], and dog [https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0450-3]

	Updated the integrated gene catalog [https://www.nature.com/articles/nbt.2942]

Internal improvements

	All lock files now are continuously “touched” (i.e., their modification time
is updated every 10 minutes). This makes it easier to discover stale lock
files.

	The automated downloading of builtin references now uses versioned URLs, so
that, in the future, we can change them without breaking backwards
compatibility.

Version 0.8.1

Released June 5th 2018

This is a minor release and upgrading is recommended.

Bugfixes

	Fix for systems with non-working locale installations

	Much faster collect calls

	Fixed lock1 [https://ngless.embl.de/stdlib.html?highlight=lock1#parallel-module] when
used with full paths (see issue #68 [https://github.com/ngless-toolkit/ngless/issues/68])

	Fix expansion of searchpath with external modules (see issue #56 [https://github.com/ngless-toolkit/ngless/issues/56])

Version 0.8

Released May 6th 2018

Incompatible changes

	Added an extra field to the FastQ statistics, with the fraction of basepairs
that are not ATCG. This means that uses of qcstats must use an up-to-date version declaration.

	In certain cases (see below), the output of count when using a GFF will change.

User-visible improvements

	Better handling of multiple features in a GFF. For example, using a GFF
containing “gene_name=nameA,nameB” would result in:

 nameA,nameB 1

Now the same results in::

 nameA 1
 nameB 1

This follows after https://git.io/vpagq and the
case of Parent=AF2312,AB2812,abc-3

	Support for minimap2 [https://github.com/lh3/minimap2] as alternative
mapper. Import the minimap2 module and specify the mapper when
calling map. For example:

ngless '0.8'
import "minimap2" version "1.0"

input = paired('sample.1.fq', 'sample.2.fq', singles='sample.singles.fq')
mapped = map(input, fafile='ref.fna', mapper='minimap2')
write(mapped, ofile='output.sam')

	Added the </> operator. This can be used to concatenate filepaths. p0
</> p1 is short for p0 + "/" + p1 (except that it avoids double forward
slashes).

	Fixed a bug in select where in some edge cases,
the sequence would be incorrectly omitted from the result. Given that this is
a rare case, if a version prior to 0.8 is specified in the version header,
the old behaviour is emulated.

	Added bzip2 support to write.

	Added reference argument to count.

Bug fixes

	Fix writing multiple compressed Fastq outputs.

	Fix corner case in select <Functions.html#select>__. Previously, it was
possible that some sequences were wrongly removed from the output.

Internal improvements

	Faster collect()

	Faster FastQ processing

	Updated to bwa 0.7.17

	External modules now call their init functions with a lock

	Updated library collection to LTS-11.7

Version 0.7.1

Released Mar 17 2018

Improves memory usage in count() and the use the when-true flag in
external modules.

Version 0.7

Released Mar 7 2018

New functionality in NGLess language

	Added max_trim argument to filter method of
MappedReadSet.

	Support saving compressed SAM files

	Support for saving interleaved FastQ files

	Compute number Basepairs in FastQ stats

	Add headers argument to samfile function

Bug fixes

	Fix count’s mode {intersection_strict} to no longer behave as {union}

	Fix as_reads() for single-end reads

	Fix select() corner case

In addition, this release also improves both speed and memory usage.

Version 0.6

Released Nov 29 2017

Behavioural changes

	Changed include_m1 default in count() function
to True

New functionality in NGLess language

	Added orf_find function (implemented through
Prodigal) for open reading frame (ORF) predition

	Add qcstats() function to retrieve the computed
QC stats.

	Added reference alias for a more human readable name

	Updated builtin referenced to include latest releases of assemblies

New functionality in NGLess tools

	Add –index-path functionality to define where to write indices.

	Allow citations as key in external modules (generally better citations
information)

	Use multiple threads in SAM->BAM conversion

	Better error checking/script validation

Bug fixes

	Output preprocessed FQ statistics (had been erroneously removed)

	Fix –strict-threads command-line option spelling

	Version embedded megahit binary

	Fixed inconsistency between reference identifiers and underlying files

Version 0.5.1

Released Nov 2 2017

Fixed some build issues

Version 0.5

Released Nov 1 2017

First release supporting all basic functionality.

List of backwards compatibility fixes

As NGLess uses a version declaration string at the top of script means that
NGLess can change its behaviour depending on the version used in the script.

NGLess 1.1

	The way that CIGAR sequence lengths are computed has changed to match
samtools. This implies that the computation of min_match_size and
min_identity_pc have slightly changed.

	Starting in NGLess 1.1, countfile reorders its input if necessary.

	count now handles multiple lines of comments at the top of its
functional_map arguments

NGLess 0.8

	select changes how a corner case is handled.

NGLess 0.6

	The count function now defaults to include_minus1 being true.

NGLess 0.5

	The preprocess function now modifies its argument. Older code using

preprocess(input) using |r|:
 ...

is automatically treated as:

input = preprocess(input) using |r|:
 ...

Ocean Metagenomics Functional Profiling

Note

If you are starting out with NGLess for metagenomics profiling, consider
using the predefined pipeline collection, NG-meta-profiler. This tutorial is based on deconstructing a
pipeline very similar to those.

In this tutorial, we will analyse a small dataset of oceanic microbial
metagenomes.

Note

This tutorial uses the full Ocean Microbial Reference Gene Catalog
presented in Structure and function of the global ocean microbiome [http://science.sciencemag.org/content/348/6237/1261359.long] Sunagawa,
Coelho, Chaffron, et al., Science, 2015

This catalog contains ca. 40 million genes and requires 56GiB of RAM

	Download the toy dataset

First download all the tutorial data:

ngless --download-demo ocean-short

This will download [http://vm-lux.embl.de/~coelho/ngless-data/Demos/ocean-short.tar.gz] and
expand the data to a directory called ocean-short.

This is a toy dataset. It is based on real data, but the samples were trimmed
so that they contains only 250k paired-end reads.

The dataset is organized in classical MOCAT style. Ngless does not require this
structure, but this tutorial also demonstrates how to upgrade from your
existing MOCAT-based projects.:

$ find
./SAMEA2621229.sampled
./SAMEA2621229.sampled/ERR594355_2.short.fq.gz
./SAMEA2621229.sampled/ERR594355_1.short.fq.gz
./SAMEA2621155.sampled
./SAMEA2621155.sampled/ERR599133_1.short.fq.gz
./SAMEA2621155.sampled/ERR599133_2.short.fq.gz
./SAMEA2621033.sampled
./SAMEA2621033.sampled/ERR594391_2.short.fq.gz
./SAMEA2621033.sampled/ERR594391_1.short.fq.gz
./tara.demo.short
./process.ngl

The whole script we will be using is there as well (process.ngl), so you
can immediately run it with:

ngless process.ngl

The rest of this tutorial is an explanation of the steps in this script.

	Preliminary imports

To run ngless, we need write a script. We start with a few imports:

ngless "0.7"
import "parallel" version "0.6"
import "mocat" version "0.0"
import "omrgc" version "0.0"

These will all be used in the tutorial.

	Parallelization

We are going to process each sample separately. For this, we use the lock1
function from the parallel module (which we
imported before):

samples = readlines('tara.demo.short')
sample = lock1(samples)

The readlines function reads a file and returns all lines. In this case, we
are reading the tara.demo.short file, which contains the three samples
(SAMEA2621229.sampled, SAMEA2621155.sampled, and
SAMEA2621033.sampled).

lock1() is a slightly more complex function. It takes a list and locks one
of the elements and returns it. It always chooses an element which has not
been locked before, so you each time you run _ngless_, you will get a different
sample.

	Preprocessing

First, we load the data (the FastQ files):

input = load_mocat_sample(sample)

And, now, we preprocess the data:

input = preprocess(input, keep_singles=False) using |read|:
 read = substrim(read, min_quality=25)
 if len(read) < 45:
 discard

	Profiling using the OM-RGC

After preprocessing, we map the reads to the ocean microbial reference gene
catalog:

mapped = map(input, reference='omrgc', mode_all=True)

The line above is the reason we needed to import the omrgc module: it made
the omrgc reference available.

mapped = select(mapped, keep_if=[{mapped}, {unique}])

Now, we need to count the results. This function takes the result of the
above and aggregates it different ways. In this case, we want to aggregate by
KEGG KOs, and eggNOG OGs:

counts = count(mapped,
 features=['KEGG_ko', 'eggNOG_OG'],
 normalization={scaled})

	Aggregate the results

We have done all this computation, now we need to save it somewhere. We will
use the collect() function to aggregate across all the samples processed:

collect(counts
 current=sample,
 allneeded=samples,
 ofile='omgc.profiles.txt')

	Run it!

This is our script. We save it to a file (process.ngl in this example) and
run it from the command line:

$ ngless process.ngl

Note that we need a large amount (ca. 64GB) of RAM memory to be able to use the
OM-RGC. You also need to run it once for each sample. However, this can be
done in parallel, taking advantage of high performance computing clusters.

Full script

Here is the full script:

ngless "0.8"
import "parallel" version "0.0"
import "mocat" version "0.0"
import "omrgc" version "0.0"

samples = readlines('tara.demo.short')
sample = lock1(samples)
input = load_mocat_sample(sample)

input = preprocess(input, keep_singles=False) using |read|:
 read = substrim(read, min_quality=25)
 if len(read) < 45:
 discard

mapped = map(input, reference='omrgc', mode_all=True)
mapped = select(mapped, keep_if=[{mapped}, {unique}])
collect(
 count(mapped,
 features=['KEGG_ko', 'eggNOG_OG'],
 normalization={scaled}),
 current=sample,
 allneeded=samples,
 ofile='omgc.profile.txt')

Ocean Metagenomics Assembly and Gene Prediction

In this tutorial, we will analyse a small dataset of oceanic microbial
metagenomes.

Note

This tutorial uses the full Ocean Microbial Reference Gene Catalog
presented in Structure and function of the global ocean microbiome [http://science.sciencemag.org/content/348/6237/1261359.long] Sunagawa,
Coelho, Chaffron, et al., Science, 2015

	Download the toy dataset

First download all the tutorial data:

ngless --download-demo ocean-short

We are reusing the same dataset as in the Ocean profiling tutorial. It may be a good idea to read steps 1-4
of that tutorial before starting this one.

	Preliminary imports

To run ngless, we need write a script. We start with a few imports:

ngless "0.6"

	Preprocessing

This is as in the profiling tutorial, except that we will be working with a
single sample. You could also use the parallel module to make it easier to work
on all samples:

sample = 'SAMEA2621155.sampled'
input = load_mocat_sample(sample)

preprocess(input, keep_singles=False) using |read|:
 read = substrim(read, min_quality=25)
 if len(read) < 45:
 discard

	Assembly and gene prediction

This is now very simply two calls to the function assemble and orf_find:

contigs = assemble(input)
write(contigs, ofile='contigs.fna')

orfs = orf_find(contigs)
write(contigs, ofile='orfs.fna')

Full script

ngless "0.6"

sample = 'SAMEA2621155.sampled'
input = load_mocat_sample(sample)

preprocess(input, keep_singles=False) using |read|:
 read = substrim(read, min_quality=25)
 if len(read) < 45:
 discard

contigs = assemble(input)
write(contigs, ofile='contigs.fna')

orfs = orf_find(contigs)
write(contigs, ofile='orfs.fna')

Human Gut Metagenomics Functional & Taxonomic Profiling

Note

If you are starting out with NGLess for metagenomics profiling, consider
using the predefined pipeline collection, NG-meta-profiler. This tutorial is based on deconstructing a
pipeline very similar to those.

In this tutorial, we will analyse a small dataset of human gut microbial
metagenomes.

Note

This tutorial is also available as a slide presentation [https://ngless.embl.de/_static/gut-metagenomics-tutorial-presentation/gut_specI_tutorial.html]

	Download the toy dataset

First download all the tutorial data:

ngless --download-demo gut-short

This will download [https://ngless.embl.de/ressources/Demos/gut-short.tar.gz] and
expand the data to a directory called gut-short.

This is a toy dataset. It is based on real data [https://www.ebi.ac.uk/ena/data/view/PRJNA339914], but the samples were
trimmed so that they contains only 250k paired-end reads.

The dataset is organized in classical MOCAT style. Ngless does not require this
structure, but this tutorial also demonstrates how to upgrade from your
existing MOCAT-based projects.:

$ find
./igc.demo.short
./SAMN05615097.short
./SAMN05615097.short/SRR4052022.single.fq.gz
./SAMN05615097.short/SRR4052022.pair.2.fq.gz
./SAMN05615097.short/SRR4052022.pair.1.fq.gz
./SAMN05615096.short
./SAMN05615096.short/SRR4052021.pair.1.fq.gz
./SAMN05615096.short/SRR4052021.single.fq.gz
./SAMN05615096.short/SRR4052021.pair.2.fq.gz
./SAMN05615098.short
./SAMN05615098.short/SRR4052033.pair.2.fq.gz
./SAMN05615098.short/SRR4052033.pair.1.fq.gz
./SAMN05615098.short/SRR4052033.single.fq.gz
./process.ngl

The whole script we will be using is there as well (process.ngl), so you
can immediately run it with:

ngless process.ngl

The rest of this tutorial is an explanation of the steps in this script.

	Preliminary imports

To run ngless, we need write a script. We start with a few imports:

ngless "0.7"
import "parallel" version "0.6"
import "mocat" version "0.0"
import "motus" version "0.1"
import "igc" version "0.0"

These will all be used in the tutorial.

	Parallelization

We are going to process each sample separately. For this, we use the lock1
function from the parallel module (which we
imported before):

samples = readlines('igc.demo.short')
sample = lock1(samples)

The readlines function reads a file and returns all lines. In this case, we
are reading the tara.demo.short file, which contains the three samples
(SAMEA2621229.sampled, SAMEA2621155.sampled, and
SAMEA2621033.sampled).

lock1() is a slightly more complex function. It takes a list and locks one
of the elements and returns it. It always chooses an element which has not
been locked before, so you each time you run _ngless_, you will get a different
sample.

	Preprocessing

First, we load the data (the FastQ files):

input = load_mocat_sample(sample)

And, now, we preprocess the data:

input = preprocess(input, keep_singles=False) using |read|:
 read = substrim(read, min_quality=25)
 if len(read) < 45:
 discard

	Filter against the human genome

We want to remove reads which map to the human genome, so we first map the
reads to the human genome:

mapped = map(input, reference='hg19')

hg19 is a built-in reference and the genome will be automatically download
it the first time you use it. Now, we discard the matched reads:

mapped = select(mapped) using |mr|:
 mr = mr.filter(min_match_size=45, min_identity_pc=90, action={unmatch})
 if mr.flag({mapped}):
 discard

The mapped object is a set of mappedreads (i.e., the same information
that is saved in a SAM/BAM file). we use the as_reads function to get back
to reads:

input = as_reads(mapped)

Now, we will use the input object which has been filtered of human reads.

	Profiling using the IGC

Note

This section of the tutorial uses the Integrated Gene Catalogue [http://www.nature.com/nbt/journal/v32/n8/full/nbt.2942.html] and
requires ca. 15GiB of RAM. Skip to step 9 if your machine does not have
this much memory.

After preprocessing, we map the reads to the integrated gene catalog:

mapped = map(input, reference='igc', mode_all=True)

The line above is the reason we needed to import the igc module: it made
the igc reference available.

Now, we need to count the results. This function takes the result of the
above and aggregates it different ways. In this case, we want to aggregate by
KEGG KOs, and eggNOG OGs:

counts = count(mapped,
 features=['KEGG_ko', 'eggNOG_OG'],
 normalization={scaled})

	Aggregate the results

We have done all this computation, now we need to save it somewhere. We will
use the collect() function to aggregate across all the samples processed:

collect(counts,
 current=sample,
 allneeded=samples,
 ofile='igc.profiles.txt')

	Taxonomic profling using mOTUS

Map the samples against the motus reference (this reference comes with the
motus module we imported earlier):

mapped = map(input, reference='motus', mode_all=True)

Now call the built-in count function to summarize your reads at gene level:

counted = count(mapped, features=['gene'], multiple={dist1})

To get the final taconomic profile, we call the motus function, which takes
the gene count table and performs the motus quantification. The result of this
call is another table, which we can concatenate with collect():

motus_table = motus(counted)
collect(motus_table,
 current=sample,
 allneeded=samples,
 ofile='motus-counts.txt')

	Run it!

This is our script. We save it to a file (process.ngl in this example) and
run it from the command line:

$ ngless process.ngl

Note

You need to run this script once for each sample. However, this
can be done in parallel, taking advantage of high performance computing
clusters.

Full script

Here is the full script:

ngless "0.7"
import "parallel" version "0.6"
import "mocat" version "0.0"
import "motus" version "0.1"
import "igc" version "0.0"

samples = readlines('igc.demo.short')
sample = lock1(samples)

input = load_mocat_sample(sample)

input = preprocess(input, keep_singles=False) using |read|:
 read = substrim(read, min_quality=25)
 if len(read) < 45:
 discard

mapped = map(input, reference='hg19')

mapped = select(mapped) using |mr|:
 mr = mr.filter(min_match_size=45, min_identity_pc=90, action={unmatch})
 if mr.flag({mapped}):
 discard

input = as_reads(mapped)

mapped = map(input, reference='igc', mode_all=True)

counts = count(mapped,
 features=['KEGG_ko', 'eggNOG_OG'],
 normalization={scaled})

collect(counts,
 current=sample,
 allneeded=samples,
 ofile='igc.profiles.txt')

mapped = map(input, reference='motus', mode_all=True)

counted = count(mapped, features=['gene'], multiple={dist1})

motus_table = motus(counted)
collect(motus_table,
 current=sample,
 allneeded=samples,
 ofile='motus-counts.txt')

Command line options

Running ngless --help will show you all the command line options. Here we
describe the most important ones.

Most of the command line options can be set in a configuration file, which
defaults to ~/.config/ngless.conf, but you can set this explicitly:

–config-file ARG Configuration files to parse

The configuraton section of the manual has more
information on which options can be set in the configuration file. Whenever an
option is set both in the config file and on the command line, then the command
line will take priority.

Note that, like configuration files, command line options do not change the
results. Any change in the results results from changing the NGLess script.
Command line options change how the results are computed, not what they
should be.

Using multiple threads

The main option is called -j and sets the number of threads.

-j,–jobs,–threads ARG Nr of threads to use

Using --strict-threads/--no-strict-threads controls whether this is a strict
or soft upper limit.

–strict-threads strictly respect the –threads option (by default,
NGLess will, occasionally, use more threads than
specified)
–no-strict-threads opposite of –strict-threads

Paths

NGLess can generate large temporary files. By default it uses the system’s
temporary directory, but it is often a good idea to set it to a path with a lot
of free disk space:

-t,--temporary-directory ARG
 Directory where to store temporary files

--search-path ARG Reference search directories (replace <references> in
 script)
--index-path ARG Index path (directory where indices are stored)

Debugging

A few options are useful for debugging:

-n,--validate-only Only validate input, do not run script
--subsample Subsample mode: quickly test a pipeline by discarding
 99% of the input
--trace Set highest verbosity mode
--no-trace opposite of --trace
--keep-temporary-files Whether to keep temporary files (default is delete
 them)
--no-keep-temporary-files
 opposite of --keep-temporary-files

QC Reporting

–create-report create the report directory
–no-create-report opposite of –create-report
-o,–html-report-directory ARG
name of output directory

Command Line Wrappers

Some of the functionality of NGLess can also be accessed using traditional
command-line scripts. These are written in Python and can be installed using
Python package management tools:

pip install NGLessPy

All of the wrappers can install NGLess if passed the --auto-install flag.

All of these wrappers also have Common Workflow
Language [http://www.commonwl.org/] so that they can be used in larger
pipelines.

ngless-install.py

This is only supported on Linux

Installs NGLess either for a single user ($HOME/.local/bin/ngless) or
globally (/usr/local/bin'). All the other tools in this package can also
install NGLess automatically.

usage: ngless-install.py [-h] [-f] [-t TARGET] [-m {user,global}] [--verbose]

optional arguments:
 -h, --help show this help message and exit
 -f, --force Install NGLess even if it is already found
 -t TARGET, --target TARGET
 Output file/path for results
 -m {user,global}, --mode {user,global}
 Global or user install
 --verbose Verbose mode

ngless-count.py

This is the equivalent of calling the count function
from within NGLess:

usage: ngless-count.py [-h] -i INPUT -o OUTPUT [-f FEATURES]
 [-m {dist1,all1,1overN,unique_only}] [--auto-install]
 [--debug]

optional arguments:
 -h, --help show this help message and exit
 -i INPUT, --input INPUT
 SAM/BAM/CRAM file to count reads on
 -o OUTPUT, --output OUTPUT
 Output file/path for results
 -f FEATURES, --features FEATURES
 Feature to count
 -m {dist1,all1,1overN,unique_only}, --multiple {dist1,all1,1overN,unique_only}
 How to handle multiple mappers
 --auto-install Install NGLess if not found in PATH
 --debug Prints the payload before submitting to ngless

ngless-map.py

This is the equivalent of calling the map function
from within NGLess.

usage: ngless-map.py [-h] -i INPUT [-i2 INPUT_REVERSE] [-s INPUT_SINGLES] -o
 OUTPUT [--auto-install] [--debug]
 (-r {sacCer3,susScr11,ce10,dm3,gg4,canFam2,rn4,bosTau4,mm10,hg19} | -f FASTA)

optional arguments:
 -h, --help show this help message and exit
 -i INPUT, --input INPUT
 FastQ file with reads to map (forward)
 -i2 INPUT_REVERSE, --input-reverse INPUT_REVERSE
 FastQ file with reads to map (reverse) - if paired end
 -s INPUT_SINGLES, --input-singles INPUT_SINGLES
 FastQ file with reads to map (singles) - if paired end
 and unpaired reads exist
 -o OUTPUT, --output OUTPUT
 Output file/path for results
 --auto-install Install NGLess if not found in PATH
 --debug Prints the payload before submitting to ngless
 -r {sacCer3,susScr11,ce10,dm3,gg4,canFam2,rn4,bosTau4,mm10,hg19}, --reference {sacCer3,susScr11,ce10,dm3,gg4,canFam2,rn4,bosTau4,mm10,hg19}
 Map against a builtin reference
 -f FASTA, --fasta FASTA
 Map against a given fasta file (will be indexed if
 index is not available)

ngless-mapstats.py

This is the equivalent of calling the mapstats
function from within NGLess. This will take a SAM/BAM
file as input and produce some simple statistics.

usage: ngless-mapstats.py [-h] -i INPUT -o OUTPUT [--auto-install] [--debug]

optional arguments:
 -h, --help show this help message and exit
 -i INPUT, --input INPUT
 SAM/BAM/CRAM file filter
 -o OUTPUT, --output OUTPUT
 Output file/path for results
 --auto-install Install NGLess if not found in PATH
 --debug Prints the payload before submitting to ngless

ngless-select.py

This is the equivalent of calling the select function
from within NGLess:

usage: ngless-select.py [-h] -i INPUT -o OUTPUT -a {keep_if,drop_if} -c
 {mapped,unmapped,unique}
 [{mapped,unmapped,unique} ...] [--auto-install]
 [--debug]

optional arguments:
 -h, --help show this help message and exit
 -i INPUT, --input INPUT
 SAM/BAM/CRAM file filter
 -o OUTPUT, --output OUTPUT
 Output file/path for results
 -a {keep_if,drop_if}, --action {keep_if,drop_if}
 Whether to keep or drop when condition are met
 -c {mapped,unmapped,unique} [{mapped,unmapped,unique} ...], --conditions {mapped,unmapped,unique} [{mapped,unmapped,unique} ...]
 One or more conditions to filter on
 --auto-install Install NGLess if not found in PATH
 --debug Prints the payload before submitting to ngless

ngless-trim.py

This is equivalent of calling the preprocess
function trimming the reads (with either
substrim or endstrim
depending on the arguments passed. Finally, any (trimmed) reads which are not
of a minimum length are discard.

usage: ngless-trim.py [-h] -i INPUT -o OUTPUT -m {substrim,endstrim} -q
 MIN_QUALITY [-d DISCARD] [--auto-install] [--debug]

optional arguments:
 -h, --help show this help message and exit
 -i INPUT, --input INPUT
 FastQ file with reads to trim
 -o OUTPUT, --output OUTPUT
 Output file/path for results
 -m {substrim,endstrim}, --method {substrim,endstrim}
 Which trimming method to use
 -q MIN_QUALITY, --min-quality MIN_QUALITY
 Minimum quality value
 -d DISCARD, --discard DISCARD
 Discard if shorted than
 --auto-install Install NGLess if not found in PATH
 --debug Prints the payload before submitting to ngless

ngless-unique.py

This is the equivalent of calling the count function
from within NGLess:

usage: ngless-unique.py [-h] -i INPUT -o OUTPUT [-c MAX_COPIES]
 [--auto-install] [--debug]

optional arguments:
 -h, --help show this help message and exit
 -i INPUT, --input INPUT
 FastQ file to filter
 -o OUTPUT, --output OUTPUT
 Output file/path for results
 -c MAX_COPIES, --max-copies MAX_COPIES
 Max number of duplicate copies to keep
 --auto-install Install NGLess if not found in PATH
 --debug Prints the payload before submitting to ngless

NGLess one liners

ngless can be used as a traditional command line transformer utility, using
the -e argument to pass an inline script on the command line.

The -p (or --print-last) argument tells ngless to output the value of
the last expression to stdout.

Converting a SAM file to a FASTQ file

$ ngless -pe 'as_reads(samfile("file.sam"))' > file.fq

This is equivalent to the full script:

ngless "0.8" # <- version declaration, optional on the command line
samcontents = samfile("file.sam") # <- load a SAM/BAM file
reads = as_reads(samcontents) # <- just get the reads (w quality scores)
write(reads, ofname=STDOUT) # <- write them to STDOUT (default format: FASTQ)

This only works if the data in the samfile is single ended as we pipe out a
single FQ file. Otherwise, you can always do:

ngless "0.8"
write(as_read(samfile("file.sam")),
 ofile="output.fq")

which will write 3 files: output.1.fq, output.2.fq, and
output.singles.fq (the first two for the paired-end reads and the last one
for reads without a mate).

Getting aligned reads from a SAM file as FASTQ file

Building on the previous example. We can add a select() call to only output
unmapped reads:

$ ngless -pe 'as_reads(select(samfile("file.sam"), keep_if=[{mapped}]))' > file.fq

This is equivalent to the full script:

ngless "0.8" # <- version declaration, optional on the command line
samcontents = samfile("file.sam") # <- load a SAM/BAM file
samcontents = select(samcontents, keep_if=[{mapped}]) # <- select only *mapped* reads
reads = as_reads(samcontents) # <- just get the reads (w quality scores)
write(reads, ofname=STDOUT) # <- write them to STDOUT (default format: FASTQ)

Reading from STDIN

For a true Unix-like utility, the input should be read from standard input.
This can be achieved with the special file STDIN. So the previous example
now reads:

$ cat file.sam | ngless -pe 'as_reads(select(samfile(STDIN), keep_if=[{mapped}]))' > file.fq

Obviously, this example would more interesting if the input were to come from another
programme (not just cat).

Preprocessing FastQ Data

Preprocessing FastQ files consists of quality trimming and filtering of reads
as well as (possible) elimination of reads which match some reference which is
not of interest.

Quality-based filtering

Filtering reads based on quality is performed with the preprocess function,
which takes a block of code. This block of code will be executed for each read.
For example:

ngless "0.8"

input = fastq('input.fq.gz')

input = preprocess(input) using |r|:
 r = substrim(r, min_quality=20)
 if len(r) < 45:
 discard

If it helps you, you can think of the preprocess block as a foreach
loop, with the special keyword discard that removes the read from the
collection. Note that the name r is just a variable name, which you choose
using the |r| syntax.

Within the preprocess block, you can modify the read in several ways:

	you can trim it with the indexing operator: r[trim5:] or r[:-trim3]

	you can call substrim, endstrim or smoothtrim to trim the read
based on quality scores. substrim finds the longest substring such that
all bases are above a minimum quality (hence the name, which phonetically
combines substring and trim). endstrim chops bases off the ends and
smoothtrim averages quality scores using a sliding window before applying
substrim.

	you can test for the length of the sequence (before or after trimming). For
this, you use the len function (see example above).

	you can test for the average quality score (using the avg_quality()
method).

You can combine these in different ways. For example, the behaviour of the
fastx quality trimmer [http://hannonlab.cshl.edu/fastx_toolkit/] can be
recreated as:

preprocess(input) using |r|:
 r = endstrim(r, min_quality=20)
 if r.fraction_at_least(20) < 0.5:
 discard
 if len(r) < 45:
 discard

Handling paired end reads

When your input is paired-end, the preprocess call above will handle each mate
independently. Three things can happen:

	both mates are discarded,

	both mates are kept (i.e., not discarded),

	one mate is kept, the other discarded.

The only question is what to do in the third case. By default, the
preprocess call keep the mate turning the read into an unpaired read (a
single), but you can change that behaviour by setting the keep_singles
argument to False:

preprocess(input, keep_singles=False) using |r|:
 r = substrim(r, min_quality=20)
 if len(r) < 45:
 discard

Now, the output will consist of only paired-end reads.

Filtering reads matching a reference

It is often also a good idea to match reads against some possible contaminant
database. For example, when studying the host associated microbiome, you will
often want to remove reads matching the host. It is almost always a good to at
least check for human contamination (during lab handling).

For this, you map the reads against the human genome:

mapped_hg19 = map(input, reference='hg19')

Now, mapped_hg19 is a set of mapped reads. Mapped reads are reads, their
qualities, plus additional information of how they matched. Mapped read sets
are the internal ngless representation of SAM files.

To filter the set, we will select. Like preprocess, select also
uses a block for the user to specify the logic:

mapped_hg19 = select(mapped_hg19) using |mr|:
 mr = mr.filter(min_match_size=45, min_identity_pc=90, action={unmatch})
 if mr.flag({mapped}):
 discard

We first set a minimum match size and identity percentage to avoid spurious
hits. We keep the reads but unmatch them (i.e., we clear any
information related to a match). Then, we discard any reads that match by
checking the flag {mapped}.

Finally, we convert the mapped reads back to simple reads using the
as_reads function (this discards the matching information):

input = as_reads(mapped_hg19)

Now, input can be passed to the next step in the pipeline.

NGLess Builtin Functions

These are the built-in NGLess functions. Make sure to check the standard
library as well.

fastq

Function to load a FastQ file:

in = fastq('input.fq')

Argument:

String

Return:

ReadSet

Arguments by value:

	Name

	Type

	Required

	Default Value

	encoding

	Symbol
({auto}, {33}, {64},
{sanger}, {solexa})

	no

	{auto}

	interleaved

	Bool

	no

	False

Possible values for encoding are:

	{sanger} or {33} assumes that the file is encoded using sanger
format. This is appropriate for newer Illumina outputs.

	{solexa} or {64} assumes that the file is encoded with a 64 offset.
This is used for older Illumina/Solexa machines.

	{auto}: use auto detection. This is the default.

If interleaved is True, then the input is assumed to be interleaved
(i.e., paired-end reads are represented by each mate being adjacent in the
file with the same ID).

When loading a data set, quality control is carried out and statistics can be
visualised in a graphical user interface (GUI). Statistics calculated are:

	percentage of guanine and cytosine (%GC)

	number of sequences

	minimum/maximum sequence length

	mean, median, lower quartile and upper quality quartile for each sequence
position

If not specified, the encoding is guessed from the file.

Gzip and bzip2 compressed files are transparently supported (determined by file
extension, .gz and .bz2 for gzip and bzip2 respectively).

paired

Function to load a paired-end sample, from two FastQ files:

in = paired('input.1.fq', 'input.2.fq', singles='input.3.fq')

paired() is an exceptional function which takes two unnamed arguments,
specifying the two read files (first mate and second mate) and an optional
singles file (which contains unpaired reads).

Argument:

String, String

Return:

ReadSet

Arguments by value:

	Name

	Type

	Required

	Default Value

	encoding

	Symbol
({auto}, {33}, {64},
{sanger}, {solexa})

	no

	{auto}

	singles

	String

	no

	
	

The encoding argument has the same meaning as for the fastq() function:

	{sanger} or {33} assumes that the file is encoded using sanger
format. This is appropriate for newer Illumina outputs.

	{solexa} or {64} assumes that the file is encoded with a 64 offset.
This is used for older Illumina/Solexa machines.

	{auto}: use auto detection. This is the default.

group

Groups a list of ReadSet objects into a single ReadSet:

rs1 = paired('data0.1.fq.gz', 'data0.2.fq.gz')
rs2 = paired('data1.1.fq.gz', 'data1.2.fq.gz')
rs = group([rs1, rs2], name='input')

Arguments by value:

	Name

	Type

	Required

	Default Value

	name

	String

	no

	“”

Argument

List of ReadSet

Returns

ReadSet

samfile

Loads a SAM file:

s = samfile('input.sam')

This function takes no keyword arguments. BAM files are also supported
(determined by the filename), as are sam.gz files.

Returns

MappedReadSet

Arguments by value:

	Name

	Type

	Required

	Default Value

	name

	String

	no

	
	

	header

	String

	no

	
	

New in version 0.7: The header argument was added in version 0.7

	The name argument names the group (for count(), for example).

	The headers argument can be used if the SAM headers are kept in a
separate file.

qcstats

New in version 0.6: This functionality was not available prior to 0.6

Returns the auto-computed statistics:

write(qcstats({fastq}), ofile='fqstats.txt')

Returns

CountsTable

Argument

{fastq}: FastQ statistics
{mapping}: Mapping statistics

countfile

Loads a TSV file:

c = countfile('table.tsv')

This function takes no keyword arguments. If the filename ends with “.gz”, it is assumed to be a gzipped file.

Returns

CountTable

as_reads

Converts from a MappedReadSet to a ReadSet:

reads = as_reads(samfile('input.sam'))

discard_singles

Throws away unpaired reads from a ReadSet:

reads = discard_singles(reads)

Argument

ReadSet

Returns

ReadSet

unique

Function that given a set of reads, returns another which only retains a
set number of copies of each read (if there are any duplicates). An
example:

input = unique(input, max_copies=3)

Argument:

ReadSet

Return:

ReadSet

Arguments by value:

	Name

	Type

	Required

	Default Value

	max_copies

	Integer

	no

	2

The optional argument max_copies allows to define the number of tolerated
copies (default: 2).

Two short reads with the same nucleotide sequence are considered copies,
independently of quality and identifiers.

This function is currently limited to single-end samples.

preprocess

This function executes the given block for each read in the ReadSet. Unless
the read is discarded, it is transferred (after transformations) to the
output. For example:

inputs = preprocess(inputs) using |read|:
 read = read[3:]

Argument:

ReadSet

Return:

ReadSet

Arguments by value:

	Name

	Type

	Required

	Default Value

	keep_singles

	bool

	no

	true

When a paired-end input is being preprocessed in single-mode (i.e., each mate
is preprocessed independently, it can happen that on eof the mates is
discarded, while the other is kept). The default is to collect these into the
singles pile. If keep_singles if false, however, they are discarded.

This function also performs quality control on its output.

map

The function map, maps a ReadSet to reference. For example:

mapped = map(input, reference='sacCer3')
mapped = map(input, fafile='ref.fa')

Argument:

ReadSet

Return:

MappedReadSet

Arguments by value:

	Name

	Type

	Required

	Default Value

	reference

	String

	no

	
	

	fafile

	String

	no

	
	

	block_size_megabases

	Integer

	no

	
	

	mode_all

	Bool

	no

	
	

	__extra_args

	[String]

	no

	[]

The user must provide either a path to a FASTA file in the fafile argument
or the name of a builtin reference using the reference argument. The
fafile argument supports search path expansion.

A list of datasets provided by NGLess can be found at Available Reference Genomes.

To use any of these, pass in the name as the reference value:

mapped_hg19 = map(input, reference='hg19')

NGLess does not ship with any of these datasets, but they are downloaded
lazily: i.e., the first time you use them, NGLess will download and cache them.
NGLess will also index any database used the first time it is used.

The option block_size_megabases turns on low memory mode (see the
corresponding section in the mapping documentation)

The option mode_all=True can be passed to include all alignments of both
single and paired-end reads in the output SAM/BAM.

Strings passed as __extra_args will be passed verbatim to the mapper.

mapstats

Computes some basic statistics from a set of mapped reads (number of reads,
number mapped, number uniquely mapped).

Argument

MappedReadSet

Return

CountTable

select

select filters a MappedReadSet. For example:

mapped = select(mapped, keep_if=[{mapped}])

Argument:

MappedReadSet

Return:

MappedReadSet

Arguments by value:

	Name

	Type

	Required

	Default Value

	keep_if

	[Symbol]

	no

	
	

	drop_if

	[Symbol]

	no

	
	

	paired

	Bool

	no

	true

At least one of keep_if or drop_if should be passed, but not both. They accept the following symbols:

	{mapped}: the read mapped

	{unmapped}: the read did not map

	{unique}: the read mapped to a unique location

If keep_if is used, then reads are kept if they pass all the conditions.
If drop_if they are discarded if they fail to any condition.

By default, select operates on a paired-end read as a whole. If
paired=False is passed, however, then link between the two mates is not
considered and each read is processed independently.

count

Given a file with aligned sequencing reads (ReadSet), count() will produce
a counts table depending on the arguments passed. For example:

counts = count(mapped, min=2, mode={union}, multiple={dist1})

Argument:

MappedReadSet

Return:

CountTable

Arguments by value:

	Name

	Type

	Required

	Default value

	gff_file

	String

	no*

	
	

	functional_map

	String

	no*

	
	

	features

	[String]

	no

	‘gene’

	subfeatures

	[String]

	no

	
	

	mode

	Symbol

	no

	{union}

	multiple

	Symbol

	no

	{dist1}

	sense

	Symbol

	no

	{both}

	normalization

	Symbol

	no

	{raw}

	include_minus1

	Bool

	no

	true

	min

	Integer

	no

	0

	discard_zeros

	Bool

	no

	false

	reference

	String

	no

	“”

If the features to count are ['seqname'], then each read will be assigned
to the name of reference it matched and only an input set of mapped reads is
necessary. For other features, you will need extra information. This can be
passed using the gff_file or functional_map arguments. If you had
previously used a reference argument for the map() function, then
you can also leave this argument empty and NGLess will use the corresponding
annotation file.

The gff_file and functional_map arguments support search path
expansion.

The functional_map should be a tab-separated file where the first column is
the sequence name and the other columns are the annotations. This is often used
for gene catalogues and can be produced by eggnog-mapper [http://eggnog-mapper.embl.de/].

features: which features to count. If a GFF file is used, this refers to
the “features” field.

subfeatures: this is useful in GFF-mode as the same feature can encode
multiple attributes (or, in NGLess parlance, “subfeatures”). By default, NGLess
will look for the "ID" or "gene_id" attributes.

mode indicates how to handle reads that (partially) overlap one or more features.
Possible values for mode are {union}, {intersection_non_empty} and
{intersection_strict} (default: {union}). For every position of a mapped read,
collect all features into a set. These sets of features are then handled in different modes.

	{union} the union of all the sets. A read is counted for every feature it overlaps.

	{intersection_non_empty} the intersection of all non-empty sets. A read is only counted for features it exclusively overlaps, even if partially.

	{intersection_strict} the intersection of all the sets. A read is only counted if the entire read overlaps the same feature(s).

Consider the following illustration of the effect of different mode options:

Reference *************************
Feature A =======
Feature B ===========
Feature C ========
Read_1 -----
Read_2 -----
Read_3 -----
Position 12345 12345 12345

Read position 1 2 3 4 5
Read_1 feature sets - - A A A
Read_2 feature sets A A A,B B B
Read_3 feature sets B,C B,C B,C B,C B,C

 union intersection_non_empty intersection_strict
Read_1 A A -
Read_2 A & B - -
Read_3 B & C B & C B & C

How to handle multiple mappers (inserts which have more than one “hit” in the
reference) is defined by the multiple argument:

	{unique_only}: only use uniquely mapped inserts

	{all1}: count all hits separately. An insert mapping to 4 locations adds 1 to each location

	{1overN}: fractionally distribute multiple mappers. An insert mapping to 4 locations adds 0.25 to each location

	{dist1}: distribute multiple reads based on uniquely mapped reads. An insert mapping to 4 locations adds to these in proportion to how uniquely mapped inserts are distributed among these 4 locations.

The argument sense should be used when the data are strand-specific and
determines which strands should be considered:

	{both} (default): a read is considered overlapping with a feature independently of whether maps to the same or the opposite strand.

	{sense}: a read has to map to the same strand as the feature to be considered overlapping.

	{antisense}: a read has to map to the opposite strand to be considered overlapping.

If you have strand-specific data, then {sense} is probably appropriate, but
with some protocols {antisense} is actually the correct version.

The following illustration exemplifies how counting would be performed.

[image: _images/sense_counting.svg]Note: before version 1.1, there was an argument strand which was
either True or False mapping to {sense} and {both}
respectively. strand is still supported, but deprecated.

min defines the minimum amount of overlaps a given feature must have, at
least, to be kept (default: 0, i.e., keep all counts). If you just want to
discard features that are exactly zero, you should set the discard_zeros
argument to True.

normalization specifies if and how to normalize to take into account feature size:

	{raw} (default) is no normalization

	{normed} is the result of the {raw} mode divided by the size of the
feature

	{scaled} is the result of the {normed} mode scaled up so that the
total number of counts is identical to the {raw} (within rounding error)

Unmapped inserts are included in the output if {include_minus1} is true
(default: False).

New in version 0.6: Before version 0.6, the default was to not include the -1 fraction.

substrim

Given a read finds the longest substring, such that all bases are of at least
the given quality. The name is a constraction of “substring trim”. For
example:

read = substrim(read, min_quality=25)

Argument:

ShortRead

Return:

ShortRead

Arguments

	Name

	Type

	Required

	Default Value

	min_quality

	Integer

	yes

	

min_quality parameter defines the minimum quality accepted.

endstrim

Given a read, trim from both ends (5’ and 3’) all bases below a minimal
quality. For example:

read = endstrim(read, min_quality=25)

Argument:

ShortRead

Return:

ShortRead

Arguments

	Name

	Type

	Required

	Default Value

	min_quality

	Integer

	yes

	

min_quality parameter defines the minimum quality value.

smoothtrim

This trims with the same algorithm as substrim but uses a sliding window
to average base qualities. For example:

read = smoothtrim(read, min_quality=15, window=4)

Quality values of bases at the edges of each read are repeated to allow
averaging with quality centered on each base. For instance a read:

Sequence A T C G with a window A A T C G G
Quality 28 25 14 12 of size 3 becomes 28 28 25 14 12 12

and is smoothed:

Seq A A T C G G smoothed quality A T C G
Qual 28 28 25 14 12 12 ---> 27 22 17 13
Windows |-----| (28 + 28 + 25) / 3 = 27 ^
 ... |-----| (28 + 25 + 14) / 3 = 22 |
 |-----| (25 + 14 + 12) / 3 = 17 !
 |-----| (14 + 12 + 12) / 3 = 13 ----+

at which point substrim is applied for trimming.

Quality scores are returned to their original value after trimming.

Argument:

ShortRead

Return:

ShortRead

Arguments

	Name

	Type

	Required

	Default Value

	min_quality

	Integer

	yes

	

	window

	Integer

	yes

	

min_quality parameter defines the minimum quality accepted for the
sub-sequence.
window parameter defines the number of bases to average over.

write

Writes an object to disk.

Argument:

Any

Return:

Void

Arguments by value:

	Name

	Type

	Required

	Default Value

	ofile

	String

	yes

	
	

	format

	String

	no

	
	

	format_flags

	[Symbol]

	no

	[]

	comment

	String

	no

	
	

	auto_comments

	String

	no

	
	

The argument ofile is where to write the content.

The output format is typically determined from the ofile extension, but the
format argument overrides this. Supported formats:

	CountsTable: {tsv} (default) or {csv}: use TAB or COMMA as a delimiter

	MappedReadSet: {sam} (default) or {bam}

	ReadSet: FastQ format, optionally compressed (depending on the extension).

By default, ReadSets are written a set of one to three FastQ files (2 files for
the paired-end reads, and one file for the single-end ones, with empty files
omitted). format_flags (since NGLess 0.7) currently supports only
{interleaved} to output an interleaved FastQ file instead.

Compression is inferred from the ofile argument:

	.gz: gzip compression

	.bz2: bzip2 compression

	.xz: xz compression

	.zstd: ZStandard compression (since NGLess 1.1)

Comments can be added with the comment argument (a free form string), or a
list of auto_comments:

	{date}: date the script was run,

	{script}: script that generated the output,

	{hash}: machine readable hash of the computation leading to this output.

print

Print function allows to print a NGLessObject to IO.

Argument:

NGLessObject

Return:

Void

Arguments by value:

none

readlines

Reads a text file and returns a list with all the strings in the file

Argumment

string: the filename

Example

readlines is useful in combination with the parallel module, where you can then use the lock1
function to process a large set of inputs:

sample = lock1(readlines('samplelist.txt'))

assemble

assemble

Implementation

assemble() uses the MEGAHIT [https://academic.oup.com/bioinformatics/article/31/10/1674/177884]
assembler.

Arguments

ReadSet

Returns

string : generated file

Arguments by value:

	Name

	Type

	Required

	Default Value

	__extra_megahit_arg

	List of str

	no

	[]

__extra_megahit_arg is passed directly to megahit with no checking.

orf_find

orf_find finds open reading frames (ORFs) in a sequence set:

contigs = assemble(input)
orfs = select(contigs, is_metagenome=True)

Argument:

SequenceSet

Return:

SequenceSet

Arguments by value:

	Name

	Type

	Required

	Default Value

	is_metagenome

	Bool

	yes

	
	

	include_fragments

	Bool

	no

	True

	coords_out

	FilePath

	no

	
	

	prots_out

	FilePath

	no

	
	

	is_metagenome: whether input should be treated as a metagenome

	include_fragments: whether to include partial genes in the output

Implementation

NGLess uses Prodigal [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848648/] as the underlying
gene finder. is_metagenome=True maps to anonymous mode.

Methods

Methods are invoked using an object-oriented syntax. For example:

mapped = select(mapped) using |mr|:
 mr = mr.pe_filter()

They can also take arguments

mapped = select(mapped) using |mr|:
 mr = mr.filter(min_match_size=30)

Short reads

Short reads have the following methods:

	avg_quality(): the average quality (as a double)

	fraction_at_least(q): the fraction of bases of quality greater or equal to q

	n_to_zero_quality(): transform the quality scores so that any N (or n)
bases in the sequence get a quality of zero.

Mapped reads

Mapped reads contain several methods. None of these methods changes its
argument, they return new values. The typical approach is to reassign the
result to the same variable as before (see examples above).

	pe_filter:
only matches where both mates match are kept.

	flag: Takes one of {mapped} or {unmapped} and returns true if the reads
were mapped (in a paired-end setting, a read is considered mapped if at least
one of the mates mapped).

	some_match: Takes a reference name and returns True if the read mapped to
that reference name.

	allbest: eliminates matches that are not as good as the best. For NGLess,
the number of errors (given by the NM field) divided by the length of the
longest match is the fractional distance of a match. Thus, a match with 3
errors over 100 bp is considered better than a match with 0 errors over
90bps.

filter

filter takes a mapped read and returns a mapped read according to several
criteria:

	min_match_size: minimum match size

	min_identity_pc: minimum percent identity (considered over the matching
location, trimming on the left and right are excluded).

	max_trim: maximum number of bases trimmed off the ends. Use 0 to specify
only global matches.

If more than one test is specified, then they are combined with the AND
operation (i.e., all conditions have to be fulfilled for the test to be true).

The default is to discard mappings that do not pass the test, but it can be
changed with the action argument, which must be one of {drop} (default:
the read is excluded from the output), or {unmatch} (the read is changed so
that it no longer reports matching).

You can pass the flag reverse (i.e., reverse=True) to reverse the sign of
the test.

Standard library

Parallel module

This module allows you to run several parallel computations. It provides two
functions: lock1 and collect.

lock1 :: [string] -> string takes a list of strings and returns a single
element. It uses the filesystem to obtain a lock file so that if multiple
processes are running at once, each one will return a different element. Ngless
also marks results as finished once you have run a script to completion.

The intended usage is that you simply run as many processes as inputs that you
have and ngless will figure everything out.

For example

ngless "0.6"
import "parallel" version "0.6"

samples = ['Sample1', 'Sample2', 'Sample3']
current = lock1(samples)

Now, current will be one of 'Sample1', 'Sample2', or 'Sample3'. You can
use this to find your input data:

input = paired("data/" + current + ".1.fq.gz", "data/" + current + ".2.fq.gz")

Often, it’s a good idea to combine lock1 with readlines (a function which
returns the contents of all the non-empty lines in a file as a list of
strings):

samples = readlines('samples.txt')
current = lock1(samples)
input = paired("data/" + current + ".1.fq.gz", "data/" + current + ".2.fq.gz")

You now use input as in any other ngless script:

mapped = map(input, reference='hg19')
write(input, ofile='outputs/'+current+ '.bam')
counts = count(mapped)
write(counts, ofile='outputs/'+current+ '.txt')

This will result in both BAM files and counts being written to the outputs/
directory. The module also adds the collect function which can paste all the
counts together into a single table, for convenience:

collect(
 counts,
 current=current,
 allneeded=samples,
 ofile='outputs/counts.txt.gz')

Now, only when all the samples in the allneeded argument have been processed,
does ngless collect all the results into a single table.

Full “parallel” example

ngless "0.8"
import "parallel" version "0.6"

sample = lock1(readlines('input.txt'))
input = fastq(sample)
mapped = map(input, reference='hg19')
collect(count(mapped, features=['seqname']),
 current=sample,
 allneeded=readlines('input.txt'),
 ofile='output.tsv')

Now, you can run multiple ngless jobs in parallel and each will work on a
different line of input.txt.

Parallel internals

Normally this should be invisible to you, but if you are curious or want to
debug an issue, here are the gory details:

The function lock1() will create a lock file in a sub-directory of
ngless-locks. This directory will be named by the hash value of the script.
Thus, any change to the script will force all data to be recomputed. This can
lead to over-computation but it ensures that you will always have the most up
to date results (ngless’ first priority is correctness, performance is
important, but not at the risk of correctness). Similarly, collect() will use
hashed values which encode both the script and the position within the script
(so that if you have more than one collect() call, they will not clash).

Lock files have their modification times updated once every 10 minutes while
NGLess is running. This allows the programme to easily identify stale files.
The software is very conservative, but any lock file with a modification time
older than one hour is considered stale and removed. Note that because NGLess
will write always create its outputs atomically, the worse that can happen from
mis-identifying a stale lock (for example, you had a compute node which lost
network connectivity, but it comes back online after an hour and resumes
processing) is that extra computation is wasted, the processes will never
interfere in a way that you get erroneous results.

Samtools module

This module exposes two samtools functionalities: sorting (samtools_sort) and
selecting reads in regions of interest (samtools_view).

ngless '0.8'
import "samtools" version "0.0"
input = samfile('input.bam')
sam_regions = samtools_view(input, bed_file="interesting_regions.bed")
write(sam_regions, ofile='interesting.sam')

samtools_view :: mappedreadset -> mappedreadset returns a subset of the
mapped reads that overlap with the regions specified in the BED file.

ngless '0.8'
import "samtools" version "0.0"
to_sort = samfile('input.bam')
sorted = samtools_sort(to_sort)
name_sorted = samtools_sort(to_sort, by={name})
write(sorted, ofile='input.sorted.bam')
write(name_sorted, ofile='input.name_sorted.bam')

samtools_sort :: mappedreadset -> mappedreadset returns a sorted version of
the dataset.

Internally, both function call ngless’ version of samtools while respecting
your settings for the use of threads and temporary disk space. When combined
with other functionality, ngless can also often stream data into/from samtools
instead of relying on intermediate files (these optimizations should not change
the visible behaviour, only make the computation faster).

Mocat module

import "mocat" version "0.6"

This is a MOCAT [http://vm-lux.embl.de/~kultima/MOCAT] compatibility layer to
make it easier to adapt projects from MOCAT to ngless.

Functions

load_mocat_sample :: string -> readset this function takes a directory name
and returns a set of reads by scanning the directory for (compressed) FastQ
files. This is slightly more flexible than MOCAT2 in terms of the patterns in
matches. In particular, the following extensions are accepted:

	fq

	fq.gz

	fq.bz2

	fastq

	fastq.gz

	fastq.bz2

Paired-end reads are assumed to be split into two files, with matching names
with .1/.2 appended. _1/_2 as is used by the European Nucleotide
Archive (ENA) is also accepted.

coord_file_to_gtf :: string -> string this function takes a MOCAT-style
.coord, converts it internally to a GTF file and returns it.

Example usage:

ngless "0.6"
import "mocat" version "0.6"

sample = load_mocat_sample('Sample1')
mapped = map(sampled, fafile='data/catalog.padded.fna')
write(count(mapped, gff_file=coord_file_to_gtf('data/catalog.padded.coord')),
 ofile='counts.txt')

This module can be combined with the parallel module (see above) to obtain a
very smooth upgrade from MOCAT to ngless.

Modules

To add a module to ngless there are two options: external or internal
modules. External modules are the simplest option.

External modules

External modules can perform two tasks:

	Add new references to ngless

	Add functions to ngless

Adding references makes them available to the map() call using the
reference argument and (optionally) allows for calls to count() without
specifying any annotation file.

Like everything else in ngless, these are versioned for reproducibility so that
the resulting script implicitly encodes the exact version of the databases used.

Functions in external modules map to command line calls to a script you
provide.

How to define an external module

You can use the example
module [https://github.com/ngless-toolkit/ngless/blob/master/Modules/example-cmd.ngm/0.0/module.yaml]
in the ngless source for inspiration. That is a complete, functional module.

A module is defined by an YaML file.

Every module has a name and a version:

name: 'module'
version: '0.0.0'

Everything else is optional.

References

References are added with a references section, which is a list of
references. A reference contains a fasta-file and (optionally) a
gtf-file. For example:

references:
 -
 name: 'ref'
 fasta-file: 'data/reference.fna'
 gtf-file: 'data/reference.gtf.gz'

Note that the paths are relative to the module directory. The GTF file may be
gzipped.

Initialization

An init section defines an initialization command. This will be run
before anything else in any script which imports this module. The intention
is that the module can check for any dependencies and provide the user with an
early error message instead of failing later after. For example:

init:
 init_cmd: './init.sh'
 init_args:
 - "Hello"
 - "World"

will cause ngless to run the command ./init.sh Hello World whenever a user
imports the module.

A note about paths: paths you define in the module.yaml file are relative
to the Yaml file itself. Thus you put all the necessary scripts and data in
the module directory. However, the scripts are run with the current working
directory of wherever the user is running the ngless protocol (so that any
relative paths that the user specifies work as expected). To find your data
files inside your module, ngless sets the environmental variable
NGLESS_MODULE_DIR as the path to the module directory.

Functions

To add new functions, use a functions section, which should contain a list of
functions encoded in YaML format. Each function has a few required arguments:

nglName
the name by which the function will be called inside of an ngless
script.

arg0
the script to call for this function. Note that the user will never see
this.

For example:

functions:
 -
 nglName: "test"
 arg0: "./run-test.sh"

will enable the user to call a function test() which will translate into a
call to the run-test.sh script (see the note above about paths).

You can also add arguments to your function, naturally. Remember that ngless
functions can have only one unnamed argument and any number of named arguments.
To specify the unnamed argument add a arg1 section, with the key atype
(argument type):

 arg1:
 atype: <one of 'readset'/'mappedreadset'/'counts'/'str'/'flag'/'int'/'option'>

The arguments of type readset, mappedreadset, and counts are passed as
paths to a file on disk. Your command is assumed to not change these, but
make a copy if necessary. Bad things will happen if you change the files.
You can specify more details on which kind of file you expect with the
following optional arguments:

 filetype: <one of "tsv"/"fq1"/"fq2"/"fq3"/"sam"/"bam"/"sam_or_bam"/"tsv">
 can_gzip: true/false
 can_bzip2: true/false
 can_stream: true/false

The flags can_gzip/can_bzip2 indicate whether your script can accept
compressed files (default: False). can_stream indicates whether the input
can be a pipe (default: False, which means that an intermediate file will
always be used).

For example, if your tool wants a SAM file (and never a BAM file), you can write:

 arg1:
 atype: mappedreadset
 filetype: sam

ngless will ensure that your tool does receive a SAM file (including
converting BAM to SAM if necessary).

Finally, additional argument are specified by a list called additional.
Entries in this list have exactly the same format as the arg1 entry, except
that they have a few extra fields. The extra field name is mandatory, while
everything else is optional:

 additional:
 -
 name: <name>
 atype: <as for arg1: 'readset'/'mappedreadset'/...>
 def: <default value>
 required: true/false

Arguments of type flag have an optional extra argument, when-true which
is a list of strings which will be passed as extra arguments when the flag is
true. You can also just specify a single string. If when-true is missing,
ngless will pass an option of the form --name (i.e., a double-dash then the
name used). For example:

 additional:
 -
 name: verbose
 atype: flag
 def: false
 when-true: "-v"
 -
 name: complete
 atype: flag
 def: false
 when-true:
 - "--output=complete"
 - "--no-filter"

All other argument types are passed to your script using the syntax
--name=value if they are present or if a default has been provided.

Arguments of type option map to symbols in ngless and require you to add an
additional field allowed specifying the universe of allowed symbols. Ngless
will check that the user specifies arguments from the allowable universe. For
example:

 additional:
 -
 atype: 'option'
 name: 'verbosity'
 def: 'quiet'
 allowed:
 - 'quiet'
 - 'normal'
 - 'loud'

If you do not have a fixed universe for your argument, then it should be a
str argument.

The required flag determines whether the argument is required. Note that
arguments with a default argument are automatically optional (ngless may
trigger a warning if you mark an argument with a default as required).

To return a value, you must request that ngless generate a new temporary file
for the script to generate output to. Therefore, you need to specify a
return section, with three parameters: rtype (return type, see below),
name the name of the argument to use, and extension the file extension
of the output type.

 return:
 rtype: "counts"
 name: "ofile"
 extension: "sam"

rtype must be one of "void", "counts", "readset", or
"mappedreadset".

If you plan to make use of search path expansion, in order
for NGLess to expand the argument prior to passing it to the external module
you need to set atype: "str" and expand_searchpath: true.

 additional:
 -
 atype: 'str'
 name: 'reference'
 expand_searchpath: true

Citation

Finally, if you wish to, you can add one or more citations:

citation: "A paper which you want to be listed when users import your module"

This will be printed out whenever users use your module and thus will help you
get exposure.

If you have more than one citation, you can use the citations key and
provide a list:

citations:
 - "Paper 1"
 - "Paper 2"

Internal Modules

This is very advanced as it requires writing Haskell code which can then
interact very deeply with the rest of ngless.

For an example, you can look at the example internal
module [https://github.com/ngless-toolkit/ngless/blob/master/NGLess/StandardModules/Example.hs].
If you want to get started, you can ask about details on the ngless user
mailing list [https://groups.google.com/forum/#%21forum/ngless].

NGLess Constants

In NGLess, any variable written in uppercase is a constant, i.e., can only be
assigned to once. In addition, there are builtin constants defined by NGLess.

Built in constants

	ARGV

This is string array which contains the arguments passed to the script

	STDIN

Use in place of a filename to read from standard input

	STDOUT

Use in place of a filename to write to standard output

For example:

ngless '0.9'

input = samfile(STDIN)
input = select(input) using |mr|:
 if mr.flag({mapped}):
 discard
write(input, ofile=STDOUT, format={bam})

This file reads a sam stream from stdin, filters it (using the select call)
and writes to standard output in bam format.

Available Reference Genomes

NGLess provides builtin support for the most widely used model organisms
(human, mouse, yeast, C. elegans, …; see the full table below). This makes it
easier to use the tool when using these organisms as some knowledge is already
built in.

Genome references available

NGLess provides archives containing data sets of organisms. Is also provided
gene annotations that provide information about protein-coding and non-coding
genes, splice variants, cDNA and protein sequences, non-coding RNAs.

The following table represents organisms provided by default:

	Name

	Description

	Assembly

	Ensembl

	bosTau4

	bos_taurus

	UMD3.1

	75

	ce10

	caenorhabditis_elegans

	WBcel235

	75

	canFam3

	canis_familiaris

	CanFam3.1

	75

	dm6

	drosophila_melanogaster

	BDGP6

	90

	dm5

	drosophila_melanogaster

	BDGP5

	75

	gg5

	gallus_gallus

	Gallus_gallus-5.0

	90

	gg4

	gallus_gallus

	GalGal4

	75

	hg38.p10

	homo_sapiens

	GRCh38.p10

	90

	hg38.p7

	homo_sapiens

	GRCh38.p7

	85

	hg19

	homo_sapiens

	GRCh37

	75

	mm10.p5

	mus_musculus

	GRCm38.p5

	90

	mm10.p2

	mus_musculus

	GRCm38.p2

	75

	rn6

	rattus_norvegicus

	Rnor_6.0

	90

	rn5

	rattus_norvegicus

	Rnor_5.0

	75

	sacCer3

	saccharomyces_cerevisiae

	R64-1-1

	75

	susScr11

	sus_scrofa

	Sscrofa11.1

	90

These archives are all created using versions 75, 85 and 90 of Ensembl [http://www.ensembl.org/].

Automatic installation

The builtin datasets are downloaded the first time they are used. They are
downloaded to the user home directory and stored in home/.ngless/genomes.

Manual installation

Is possible to install data sets locally, before running any script. They can
be installed in User mode or in Root mode.

To install locally (organism bos taurus), use the following command:

$ ngless --install-reference-data bosTau4

If you install as a super-user, then the dataset will be available for all
users:

$ sudo ngless --install-reference-data bosTau4

When attempting to install an organism if is returned True it means that
the organism is already installed, and there is no reason to install again.
Otherwise, a progress bar is displayed to provide information on the download.

Data Set Structure

This section provides the technical details necessary if you wish to build your
own reference for others to use automatically. For most users, it will likely
be easier to directly specify the references in the ngless script.

The archives provided by NGLess contain BWA index files, the genome reference
file and a gene annotation file.

Name.tar.gz
 |
 |--- Sequence
 | |
 | |-- BWAIndex
 | |-- genome.fa.gz
 | |-- genome.fa.gz.amb
 | |-- genome.fa.gz.ann
 | |-- genome.fa.gz.bwt
 | |-- genome.fa.gz.pac
 | |-- genome.fa.gz.sa
 |
 |--- Annotation
 |-- annot.gtf.gz

The basename of Description.tar.gz (Description) will have the description name
of the respective organism (i.e, Mus_musculus.tar.gz).

Taxonomic profiling using mOTUs with ngless

You can use ngless to compute mOTU profiles [http://www.bork.embl.de/software/mOTU/].

This requires the use of the (standard) motus module:

ngless "0.8"
import "motus" version "0.1"

This module (with the motus database) will be downloaded the first time you use
it.

You can use all the ngless functionality to load and preprocess your data:

input = paired('input.1.fq.gz', 'input.2.fq.gz')

files = preprocess(input, keep_singles=False) using |read|:
 read = substrim(read, min_quality=25)
 if len(read) < 45:
 discard

Producing the motus tables is done in three steps.

	Map the samples against the motus reference (this reference comes with
the motus module we imported earlier):

mapped = map(files, reference='motus', mode_all=True)

	call the built-in count function to summarize your reads at gene level,
optionally adding include_minus1=true if you want to also obtain the
fraction of unknown reads (-1). This is the default behavior from version 0.6 onwards:

counted = count(mapped, features=['gene'], multiple={dist1})

	call the motus function, which takes the gene count table and performs
the motus quantification. The result of this call is another table, which
can then be written out with the standard write call:

table = motus(counted)
write(table, ofile='motus-counts.txt')

This function is the only special function introduced by the motus module,
everything else is standard ngless.

You can see a full worked out example in the examples/motus.ngl recipe [https://github.com/ngless-toolkit/ngless/blob/master/examples/motus.ngl]

Configuration

Note

ngless’ results do not change because of configuration or command
line options. The ngless script always has complete information on what
is computed. What configuration options change are details of how the
results are computed such as where to store intermediate files and how many
CPU cores to use.

Ngless gets its configuration options from the following sources:

	Defaults/auto-configuration

	A global configuration file

	A user configuration file (typically $HOME/.config/ngless.conf)

	A configuration file present in the current directory`

	A configuration file specified on the command line

	Command line options

In case an option is specified more than once, the order above determines
priority: later options take precedence.

Configuration file format

NGLess configuration files are text files using assignment syntax. Here is a
simple example, setting the temporary directory and enabling auto-detection of
the number of threads:

temporary-directory = "/local/ngless-temp/"
jobs = "auto"

Options

jobs: number of CPUs to use. You can use the keyword auto to attempt
auto-detection (see below).

strict-threads: by default, NGLess will, in certain conditions, use more
CPUs than specified by the jobs argument (in bursts of activity). This
happens, for example, when it calls an external short-read-mapper (such as bwa [http://bio-bwa.sourceforge.net/bwa.shtml]). By default, it will pass the
threads argument through to bwa. However, it will still be processing
bwa’s output using its own threads. This will results in small bursts of
activity where the CPU usage is above jobs. If you specify
--strict-threads, however, then this behavior is curtailed and it will
never use more threads than specified (in particular, it will call bwa
using one thread fewer than specified, while restricting itself to a single
thread, thus even peak usage is at most the number of specified threads).

temporary-directory: where to keep temporary files. By default, this is the
system defined temporary directory (either /tmp or the value of the
$TEMPDIR environment variable on Unix).

color: whether to use color output. Defaults to auto (i.e., print color
if the output is a terminal), no (never use color), force (use color even
if writing to a file or pipe), yes (synonym of force).

print-header: whether to print ngless banner (version info…).

user-directory: user writable directory to cache downloads (default is
system dependent, on Linux, typically $HOME/.local/share/ngless/.

user-data-directory: user writable directory to cache data (default is a
data directory inside the user-directory [see above]).

index-path: user writable directory to store indices and similar data.

global-data-directory: global data directory.

Debug options

keep-temporary-files: whether to keep temporary files after the end of the programme.

trace (only command line): print a lot of internal information.

Auto-detection of the number of CPUs

If the option auto is passed as the number of jobs (either on the command
line or in the configuration file), ngless will inspect the environment looking
for a small set of clues as to how many CPUs to use. In particular, it will
make use of these variables:

	OMP_NUM_THREADS

	NSLOTS

	LSB_DJOB_NUMPROC

	SLURM_CPUS_PER_TASK

If none are found (or they do not contain a single number), an error is produced.

Search path expansion

Note

Search path expansion is a very powerful feature. It can be abused to
defeat NGLess’ reproducibility mechanisms and to
obsfucate which reference information is being used. However, if used
correctly, it can greatly simplify file management and enhance
reproducibility.

NGLess supports a search path system to find references. Certain functions
(such as map()) support search path expansion. For
example, you can write:

map(input, fafile="<>/my-reference.fa")

Then if the search path consists of "/opt/ngless-references/", the expanded
version will be "/opt/ngless-references/my-reference.fa".

Named and unnamed search paths

You can have named and unnamed paths in your search path. The rules are a bit
complex (see below), but it makes sense if you see examples:

map(input, fafile="<references>/my-reference.fa")

With the search path ['references=/opt/ngless-refs'] will result in
'/opt/ngless-refs/my-reference.fa'.

With the search path ['internal=/opt/ngless-internal',
'references=/opt/ngless-refs'] will also result in
'/opt/ngless-refs/my-reference.fa' as the internal path will not be
matched.

With the search path ['internal=/opt/ngless-internal',
'references=/opt/ngless-refs', '/opt/ngless-all'] now it will result in
['/opt/ngless-refs/my-reference.fa', '/opt/ngless-all/my-reference.fa'] as
the unnamed path will always match. Since there is more than one result, both
are checked (in order).

Using <> (as in the example above) will use only unnamed paths.

Setting the search path

The search path can be passed on the command line:

ngless script.ngl --search-path "references=/opt/ngless"

Alternatively, you can set it on the ngless configuration file:

search-path = ["references=/opt/ngless"]

Note that the search path is a list, even if it contains a single element.

Rules

	If a path matches <([^>]*)>, then it is path expanded.

	The search path (which is a list of named and unnamed search paths) if
filter. A path is kept on the list if it is an unnamed paht or if the name
matches the requested pattern (<references> requests “references”;
<> never matches so that only unnamed paths are kept).

	Paths are tested in order and the first path referring to an existing file
is kept.

Similarly

Reproducible Computation With NGLess

NGLess has several builtin features to make it easier to achieve reproducible
research.

All information that is needed to run a result is contained in the NGLess
script. There is no command line or configuration option which changes the
results: they only change the way in which the computation was run (what
information was printed on the console, where intermediate files were saved,
&c).

The version annotations that NGLess requires also enhance reproducibility while
allowing us to update NGLess going forward.

Annotate results with input script

The write() function call supports the argument auto_comments which will
add (as comments) meta information to the output. In particular, you can use
the {script} auto comment to add the script to your output. For example:

ngless '0.8'
mapped = samfile('input.bam')

counted = count(mapped, features=['seqname'])
write(counted,
 ofile='output.txt',
 auto_comments=[{script}]) # <<<< ADD SCRIPT

This will add the script to your output. Thus, it will be easy to see how the
output was generated.

You can also use {date}, which will output a string with the date in which
the script was run (note that the result is no longer reproducible at the Byte
level as each run will contain a different date/time). Finally, the comment
argument allows for any free text string:

write(counted,
 ofile="output.txt",
 comment="For my awesome Science publication",
 auto_comments=[{script}])

Finally, you can use the magical {hash} auto comment:

write(counted,
 ofile="output.txt",
 comment="For my awesome Science publication",
 auto_comments=[{script}, {hash}])

This will add a hash string to the output describing the computational path to
compute the result. This is smarter than a simple hash of the script as it does
not consider code that is not necessary to generate the script or elements such
as variable names (i.e., if you change the variable names, the hash will stay
the same as it is the same computational path).

The collect() function also support the same arguments.

Frequently Asked Questions

This is a list of questions we have regularly gotten on the project. See below
for questions about the ngless language.

Why a new domain-specific language instead of a library in Python (or another existing language)?

First of all, you can actually use NGLess through Python, using
NGLessPy [https://github.com/ngless-toolkit/nglesspy].

However, the native mode of NGLess is using its internal DSL (domain specific
langugage). There are several advantages to this approach:

	Fast error checking which can speed up the development process. For example,
static type checking, which is known to many programmer. In general, we do a
lot of error checking before even starting interpretation. We perform syntax
and error checking, but we can also check some conditions that can be tricky
to express with simple types only (e.g., certain parameter combinations can
be illegal). We also pre-check all the input files (so even if you only use
a particular file in step 5 of your process, we check if it exists even
before running steps 1 through 4). We even do some things like: if you use
step 1 to compute to name of the input file that will be used in step 5, we
will check it immediately after step 1. Same for output files. If you issue
a write() call using output/results.txt as your output filename, we will
check if a directory named output exists and is writable. We also try to be
helpful in the error messages (mispelled a parameter value? Here’s an error,
but also my best guess of what you meant + all legal values). I really care
about error messages.

	By controlling the environment more than would be typical with a Python
library (or any other language), we can also get some reproducibility
guarantees. Note too that we declare the version of every script so that we
can update the interpreter in the future without silently changing the
behaviour of older ones.

	Using a domain specific language makes the resulting scripts very readable
even for non-experts as there is little boilerplate.

	Finally, we needed the result to be fast and languages such as Python often
add a lot of overhead.

Is the language extensible?

Yes.

While the basic types and syntax of the language are fixed, it is not hard to
add external modules that introduce new functions. These can be described with
a YAML file and can use any command line tool.

Add new model organisms can similarly be done with simple YAML file.

More advanced extensions can be done in Haskell, but this is considered a
solution for advanced users.

Couldn’t you just use Docker/Bioboxes [http://bioboxes.org/]?

Short answer: Bioboxes gets us part of the way there, but not all of it;
however, if we think of these technologies as complements, we might get more
out of them.

Longer answer:

Several of the goals of ngless can be fulfilled with a technology such as
bioboxes. Namely, we can obtain reproducibility of computation, including
across platforms using bioboxes without having to bother with ngless. However,
the result is less readable than an ngless script, which is another important
goal of ngless. An ngless script can be easily be submitted as supplemented
methods to a journal publication and even be easily scrutinized by a
knowledgeable reviewer in an easier way than a Docker container.

Furthermore, the fact that we work with a smaller domain than a Docker-based
solution (we only care about NGS) means that we can provide the users a better
experience than is possible with a generic tool. In particular, when the user
makes a mistake (and all users will make mistakes), we can diagnose it faster
and provide a better error message than is possible to do with Bioboxes.

What is the relationship of ngless to the Common Workflow Language [http://common-workflow-language.github.io/]?

Like for the question above, we consider ngless to be related to but not
overlapping with the CWL (Common Workflow Language).

In particular, much of functionality of ngless can also be accessed in CWL
workflow, using our command line wrappers all of
which have CWL wrappers.

Additionally, (with some limitations), you can embedded a generic NGLess script
within a larger CWL workflow by using the --export-cwl functionality. For
example, to automatically generate a wrapper for a script called
my-script.ngl, call:

ngless --export-cwl=wrapper.cwl my-script.ngl

The automatically generated wrapper.cwl file can now be used as a CWL tool
within a larger pipeline. See more in the CWL page.

How does ngless interact with job schedulers and HPC clusters?

Generally speaking, it does not. It can be used with HPC clusters, whereby you
simply run a job that calls the ngless binary.

The parallel
module [https://ngless.embl.de/stdlib.html?highlight=parallel#parallel-module]
can be used to split large jobs in many tasks, so that you can run multiple
ngless instances and they collaborate. It is written such that does not depend
on the HPC scheduler and can, thus, be used in any HPC system (or even, for
smaller jobs, on a single machine).

Questions about the ngless language

Can I pass command line arguments to a script?

Yes, you can. Just add them as additional arguments and they will be available
inside your script as ARGV.

What are symbols (in the ngless language)?

If you are familiar with the concept, you can think of them as enums in other
languages.

Whenever a symbol is used in the argument to a function, this means that that
function takes only one of a small number of possible symbols for that
argument. This improves error checking and readibility.

Does the select function work on inserts (considering both mates) or per-read (treating the data as single-ended)?

By default, select considers the insert as a whole, but you can have it
consider each read as single-end by using setting the paired argument to
False.

NGLessPy: NGLess in Python

Note As of Oct 2017, NGLess is considered beta software (we believe it
works, but there may still be a few rough edges), while NGLessPy is alpha
software (very experimental).

Install

 pip install NGLessPy

(or from source, using the standard python setup.py install)

Basic Tutorial

This tutorial expects a certain familiarity with general ngless concepts and
functions.

We start by importing the NGLess object:

 from ngless import NGLess

We now build an NGLess.NGLess object, giving it the version of ngless we wish
(this is like the version declaration at the top of an NGLess file:

 sc = NGLess.NGLess('0.8')

To simplify the rest of the script, we are going to use the short name e to
refer to the environment of the script we are generating. The environment is
what will hold the ngless variables we will use:

 e = sc.env

We can import ngless modules using the import_ function (using name and
version):

 sc.import_('mocat', '0.0')

Now, we can use all NGLesss functionality. Functions get an underscore at the
end, like this:

 e.sample = sc.load_mocat_sample_('testing')

preprocess_ is special because it takes a block in ngless, which maps to it
taking a function in Python. We can use decorator syntax to do it all
compactly:

 @sc.preprocess_(e.sample, using='r')
 def proc(bk):
 # bk is the block environment, where `r` is defined
 bk.r = sc.substrim_(bk.r, min_quality=25)

Now, we map against hg19 and filter it. As you can see, ngless functions are
called with an extra underscore and variables are kept in the e object:

 e.mapped = sc.map_(e.sample, reference='hg19')
 e.mapped = sc.select_(e.mapped, keep_if=['{mapped}'])

 sc.write_(e.mapped, ofile='ofile.sam')

Finally, we execute the resulting script:

 sc.run(auto_install=True)

This will even install NGLess if it is not available in the PATH.

Full script

 from ngless import NGLess

 sc = NGLess.NGLess('0.8')
 e = sc.env

 sc.import_('mocat', '0.0')

 e.sample = sc.load_mocat_sample_('testing')
 @sc.preprocess_(e.sample, using='r')
 def proc(bk):
 # bk is the block environment, where `r` is defined
 bk.r = sc.substrim_(bk.r, min_quality=25)

 e.mapped = sc.map_(e.sample, reference='hg19')
 e.mapped = sc.select_(e.mapped, keep_if=['{mapped}'])

 sc.write_(e.mapped, ofile='ofile.sam')

 sc.run(auto_install=True)

Common Workflow Language Integrations

Simple operations

Simple NGLess operations can be performed through the command line
wrappers, all of which have a CWL tool
description.

Automatic CWL export of NGLess scripts

An NGLess script that conforms to certain rules can be exported as a CWL tool
using the --export-cwl option:

ngless script.ngl --export-cwl=tool.cwl

The rules are simple: the script must use ARGV for its inputs and outputs.
For example, this is a conforming script:

ngless "0.8"

mapped = samfile(ARGV[1])

mapped = select(mapped, drop_if=[{mapped}])

write(mapped,
 ofile=ARGV[2])

The resulting tool will take two arguments, specifying its input and output.

Advanced options

Subsample mode

Subsample mode simply throws away >90% of the data. This allows you
to quickly check whether your pipeline works as expected and the output files
have the expected format. Subsample mode should never be used in production.
To use it, pass the option --subsample on the command line:

ngless --subsample script.ngl

will run script.ngl in subsample mode, which will probably run much faster
than the full pipeline, allowing to quickly spot any issues with your code. A
10 hour pipeline will finish in a few minutes (sometimes in just seconds) when
run in subsample mode.

Note

subsample mode is also a way to make sure that all indices exist. Any
map() calls will check that the necessary indices are present: if a
fafile argument is used, then the index will be built if necessary; if
a reference argument is used, then the necessary datasets are
downloaded if they have not previously been obtained.

Subsample mode also changes all your write() so that the output
files include the subsample extension. That is, a call such as:

write(output, ofile='results.txt')

will automatically get rewritten to:

write(output, ofile='results.txt.subsample')

This ensures that you do not confuse subsampled results with the
real thing.

NGLess Language

This document describes the NGLess language.

Tokenization

Tokenization follows the standard C-family rules. A word is anything that
matches [A-Za-z_][A-Za-z_0-9]*. The language is case-sensitive. All files are
assumed to be in UTF-8.

Both LF and CRLF are accepted as line endings (Unix-style LF is preferred).

A semicolon (;) can be used as an alternative to a new line. Any spaces (and
only space characters) following a semicolon are ignored. This feature is
intended for inline scripts at the command line (passed with the -e
option), its use for scripts is heavily discouraged and may trigger an error in
the future.

Script-style (# to EOL), C-style (/* to */) and C++-style (// to EOL) comments
are all recognised. Comments are effectively removed prior to any further
parsing as are empty lines.

Strings are denoted with single or double quotes and standard backslashed
escapes apply (\n for newline, …).

A symbol is denoted as a token surrounded by curly braces (e.g., {symbol}
or {gene}).

Integers are specified as decimals [0-9]+ or as hexadecimals
0x[0-9a-fA-F]+.

Version declaration

The first line (ignoring comments and empty lines) of an NGLess file MUST be a
version declaration:

ngless "0.9"

Module Import Statements

Following the version statement, optional import statements are allowed, using
the syntax import "<MODULE>" version "<VERSION>". For example:

import "batch" version "1.0"

This statement indicates that the batch module, version 1.0 should be
used in this script. Module versions are independent of NGLess versions.

Only a predefined set of modules can be imported (these are shipped with
NGLess). To import user-written modules, the user MUST use the local import
statement, e.g.:

local import "batch" version "1.0"

Import statements MUST immediately follow the version declaration

Blocks

Blocks are defined by indentation in multiples of 4 spaces. To avoid confusion,
TAB characters are not allowed.

Blocks are used for conditionals and using statements.

Data types

NGless supports the following basic types:

	String

	Integer

	Double

	Bool

	Symbol

	Filename

	Shortread

	Shortreadset

	Mappedread

	Mappedreadset

In addition, it supports the composite type List of X where X is a basic type.
Lists are built with square brackets (e.g., [1,2,3]). All elements of a list
must have the same data type.

String

A string can start with either a quote (U+0022, ") or a single quote
(U+0027,') or and end with the same character. They can contain any number
of characters.

Special sequences start with \. Standard backslashed escapes can be
used as LF and CR (\n and \r respectively), quotation marks
(\') or slash (\\).

Integer

Integers are specified as decimals [0-9]+ or as hexadecimals
0x[0-9a-fA-F]+. The prefix - denotes a negative number.

Double

Doubles are specified as decimals [0-9]+ with the decimal point serving as a
separator. The prefix - denotes a negative number.

Doubles and Integers are considered numeric types.

Boolean

The two boolean constants are True and False (which can also be written
true or false).

Symbol

A symbol is denoted as a token surrounded by curly braces (e.g., {symbol} or
{drop}). Symbols are used as function arguments to indicate that there is
only a limited set of allowed values for that argument. Additionally, unlike
Strings, no operations can be performed with Symbols.

Variables

NGless is a statically typed language and variables are typed. Types are
automatically inferred from context.

Assignment is performed with = operator:

variable = value

A variable that is all uppercase is a constant and can only be assigned to
once.

Operators

Unary

The operator (-) returns the symmetric of its numeric argument.

The operator len returns the length of a ShortRead.

The operator not negates its boolean argument

Binary

All operators can only be applied to numeric types. Mixing integers and doubles
returns a double. The following binary operators are used for arithmetic:

+ - < > >= <= == !=

The + operator can also perform concatenation of String objects.

The </> operator is used to concatenate two Strings while also adding a ‘/’
character between them. This is useful for concatenating file paths.

Indexing

Can be used to access only one element or a range of elements in a ShortRead.
To access one element, is required an identifier followed by an expression
between brackets. (e.g, x[10]).

To obtain a range, is required an identifier and two expressions separated by a
‘:’ and between brackets. Example:

	x[:] - from position 0 until length of variable x

	x[10:] - from position 10 until length of variable x

	x[:10] - from position 0 until 10

Conditionals

Conditionals work as in Python. For example:

if 5 > 10:
 val = 10
else:
 val = 20

Functions

Functions are called with parentheses:

result = f(arg, arg1=2)

Functions have a single positional parameter, all other must be given by name:

unique(reads, max_copies=2)

The exception is constructs which take a block: they take a single positional
parameter and a block. The block is passed using the using keyword:

reads = preprocess(reads) using |read|:
 block
 ...

The |read| syntax defines an unnamed (lambda) function, which takes a
variable called read. The function body is the following block.

There is no possibility of defining new functions within the language. Only
built-in functions or those added by modules can be used.

Methods

Methods are called using the syntax object . methodName (<ARGS>). As with
functions, one argument may be unnamed, all others must be passed by name.

Grammar

This is the extended Backus-Naur form grammar for the NGLess language (using
the ISO
14977 [https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form]
conventions). Briefly, the comma (,) is used for concatenation, [x]
denotes optional, and {x} denotes zero or more of x.

string = ? a quoted string, produced by the tokenizer ? ;
word = ? a word produced by the tokenizer ? ;

eol =
 ';'
 | '\n' {'\n'}
 ;

ngless = [header], body;

header = {eol}, ngless_version, {eol}, {import}, {eol}

ngless_version = "ngless", string, eol ;

import = ["local"], "import", string, "version", string, eol ;

body = {expression, eol} ;

expression =
 conditional
 | "discard"
 | "continue"
 | assignment
 | innerexpression
 ;

innerexpression = left_expression, binop, innerexpression
 | left_expression
 ;

left_expression = uoperator
 | method_call
 | indexexpr
 | base_expression
 ;

base_expression = pexpression
 | funccall
 | listexpr
 | constant
 | variable
 ;

pexpression = '(', innerexpression, ')' ;

constant =
 "true"
 | "True"
 | "false"
 | "False"
 | double
 | integer
 | symbol
 ;

double = integer, '.', integer ;
integer = digit, {digit} ;
digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' ;
symbol = '{', word, '}' ;

indentation = ' ', {' '} ;
binop = '+' | '-' | '*' | "!=" | "==" | "</>" | "<=" | "<" | ">=" | ">" | "+" | "-" ;

uoperator =
 lenop
 | unary_minus
 | not_expr
 ;

lenop = "len", '(', expression, ')'
unary_minus = '-', base_expression ;
not_expr = "not", innerexpression ;

funccall = paired
 | word, '(', innerexpression, kwargs, ')', [funcblock]
 ;

(* paired is a special-case function with two arguments *)
paired = "paired", '(', innerexpression, ',', innerexpression, kwargs ;

funcblock = "using", '|', [variablelist], '|', ':', block ;

kwargs = {',', variable, '=', innerexpression} ;

assignment = variable, '=', expression ;

method_call = base_expression, '.', word, '(', [method_args], ')';
method_args =
 innerexpression, kwargs
 | variable, '=', innerexpression, kwargs
 ; (* note that kwargs is defined as starting with a comma *)

indexexpr = base_expression, '[', [indexing], ']' ;

indexing = [innerexpression], ':', [innerexpression] ;

listexpr = '[', [list_contents] , ']' ;
list_contents = innerexpression, {',', innerexpression } ;

conditional = "if", innerexpression, ':', block, [elseblock] ;
elseblock = "else", ':', block ;
block = eol, indentation, expression, eol, {indentation, expression, eol} ;

variablelist = variable, {',', variable} ;
variable = word ;

Mapping

Mapping is one of the major functions of NGLess. Here we describe, in more
detail, some of its functionality.

Mapping is implemented using bwa [http://bio-bwa.sourceforge.net/]. As of
version 0.6, NGLess uses bwa 0.7.15.

By default, bwa is called with default parameters. If the mode_all argument
is set to true, then -a is passed to bwa.

Low memory mode

As databases get very large, memory requirements can grow very large. In order
to make large databases accessible to users without access to large memory
machines, NGLess implements a simple heuristic: it splits the input database
into smaller blocks, processes each one in turn and combines the results at the
end.

To enable low-memory mode, use the block_size_megabases in the script. Set
it to a value that is less than the available memory.

A FAQ is why the memory requirements are not a configuration option and must be
specified in the script. As low memory mode is heuristic, it can potentially
change results. As NGLess aims to capture all parameters that can change the
result inside the script, it must be specified as an argument to map().

Using SOAPAligner

Note

Support for SOAPAligner is experimental (as of version 0.6)

You can use SOAPAligner as an alternative to bwa using the following code:

import "soap" version "0.0"

input =

mapped = map(input, mapper="soap")

Note that, unlike the case for bwa, SOAPAligner is not bundled with NGLess and
must be in the PATH to be used.

Software used by NGLess

NGLess internally uses a few other packages to implement specific
functionality. As we believe in giving appropriate credit, these pacakges are
printed in the citation list of any script that uses them.

NGLess version 0.6 uses the following software tools:

	Samtools (used for SAM/BAM handling as well as in the samtools module: version 1.6

	BWA (used for map): version 0.7.15

	Prodigal (used for orf_find): version 2.6.3 (with a patch to fix a bug [submitted upstream])

Index

Tutorial

Example

This example will use data from a real experiment stored at EMBL-EBI. The data
can be accessed at http://www.ebi.ac.uk/ena/data/view/SRP023199 and represent
HeLa cells. The idea is to preprocess the data set, map it against the
human genome and count the reads that overlap with known genes.

We will use the fastQ file
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR867/SRR867735/SRR867735.fastq.gz that can
be accessed in the table, on column Sample accession, with value
SAMN02179475.

Load fastQ file

Before creating the whole script lets start by understanding our data set. This
first step will allow you to perform quality control.

ngless "0.0"

/* load the data set */
input = fastq('SRR867735.fastq.gz')

You can now save the script (as test.ngl for example) to the directory
where the file SRR867735.fastq.gz is and run ngless:

$ ngless test.ngl

Using a web browser, you can open the file test.output_ngless/index.html to
see information about a data set and the ngless job. At ‘Before QC’ there will
be the result of the execution.

[image: ../images/resultBeforeQC.png]
We can now see that the data set has:

	+/- 50% of guanine and cytosine.

	Follows the Encoding Sanger.

	Has 32456161 sequences

	And all sequences have the same length (50).

Also, by analyzing the plot we can see that the first 3 base pairs, on average,
have the lowest quality (31.0). So, a good preprocess starts by removing the
first 3 base pairs.

Feel free to explore all the available statistics.

Preprocess

For the preprocessing of the data we will:

	Remove the first 3 base pairs.

	Substrim with a minimum quality of 15.

	Discard if the length of a read is smaller than 20.

Let’s add the following code to the already existent code:

preprocess(input) using |read|:
read = read [3:] // Discard from position 0 until 3 (excluded).
read = substrim(read, min_quality=15)
if len(read) < 20:
 discard

The using |var| syntax is similar to Ruby’s blocks or lambda functions in
other languages. The whole block after using is executed for each read in
input, each time assigning it to the variable read.

This will generate quality control that will be detailed at the execute
section.

Map

After adding the preprocess code, it’s time to map against the human genome.
Since the human genome is provided by default, you can simply do:

/* reference genome */
human = 'hg19'
mapped = map(input, reference=human)

Counting

We are only interested in the human genes so lets annotate the mapping results
to the corresponding genes. Since we used a genome provided by NGLess, we do
not need to specify which annotation file to use (it’ll be built in):

/* features to annotate */
feats = ['gene']
counts = count(mapped, multiple={dist1}, keep_ambiguous=false, features=feats)

You can also see the use of some symbol arguments (symbols are the special
strings inside braces, like {dist1}). Symbols are like strings, except that
when a function takes a symbol, that means that there is a set of predefined
values it can take. So, for example, the function count takes a multiple
argument which defines how to count reads which can be assigned to mulitple
features. The options are {all1} (count all equally as 1), {1overN}
(distribute equally across all candidates, i.e., increment them by 1/N), or
{dist1} (distribute multiple features by using the singly mapped features as
a baseline). In practice, the difference between strings and symbols is that
symbols are, as much as possible, checked at the start of interpretation (if
you write {all2}, you will immediately get a message “did you mean all1?”
before interpretation starts or if you run the script with -n, which just
performs this validation).

Write to disk

Finally, we write the results to a file:

/* write counts to disk */
write(counts, ofile="samples/CountsResult.txt")

Execute

You can now save the script (as test.ngl for example) to the directory
where the file ‘SRR867735.fastq.gz’ is and run ngless.

$ ngless test.ngl

As a result of the execution, should be returned the following:

Total reads: 31654060
Total reads aligned: 28095945[88.76%]
Total reads Unique map: 22434229[79.85%]
Total reads Non-Unique map: 5661716[20.15%]
Total reads without enough qual: 0

These are statistics of the map of the file against the human genome.

 nav.xhtml

 Table of Contents

 		
 NGLess: NGS Processing with Less Work

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

